این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
International Journal of Travel Medicine and Global Health
، جلد ۱۱، شماره ۴، صفحات ۳۹۱-۴۰۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Machine Learning-Based Algorithms for Determining C-Section among Mothers in Bangladesh
چکیده انگلیسی مقاله
Background: C-section prevalence has increased drastically over the past few decades across the globe. This growth has been caused by an array of factors, including maternal, socio-demographic, and institutional factors, and it is a global concern in both developed and developing countries. Therefore, the objective of this study is to identify relevant risk factors for the delivery type, and find a more accurate ML-based model for identifying cesarean women.
Methods: The number of C-sections performed in the nation has increased to at least 45 percent in the two years prior to 2022. Because of this, we have used multiple logistic regression and machine learning algorithms to determine cesarean delivery and identify the socio-demographic risk factor among mothers in Bangladesh.
Results: Bivariate analysis results revealed that higher educated mothers and fathers, the richest family, overweight mothers, and hospital delivery had a higher percentage of cesarean babies. With an accuracy of 83.74%, NB (naive Bayes) outperforms the other five classifiers. We can get more precise information than accuracy from the ROC curve and the AUC. Depending on the AUC value, we can see that among all classifiers, Logistic Regression (LR) and Random Forest (RF) provide the most accurate classification for determining c-section.
Conclusions: Our findings contribute to a better understanding of how to categorize C-section intentions among Bangladeshi women. The technique will be useful in identifying the women who are most likely to undergo a C-section in the healthcare system. As a result, the government can launch an effective public awareness campaign.
کلیدواژههای انگلیسی مقاله
Cesarean Delivery,Machine Learning (ML) Algorithm,Performance indicator,Bangladesh
نویسندگان مقاله
Sohani Afroja |
Jahangirnagar University
Mohammad Alamgir Kabir |
Jahangirnagar University
Arif Bin Saleh |
Resident Physician, Jersey Shore University Hospital, New Jersey, USA.
نشانی اینترنتی
https://www.ijtmgh.com/article_182700_a7d2b169a76ddc843f320a03456647df.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات