این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Fuzzy Systems، جلد ۲۰، شماره ۶، صفحات ۱-۲۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A robust fuzzy clustering model for fuzzy data based on an adaptive weighted L1 norm
چکیده انگلیسی مقاله The imprecision related to measurements can be managed in terms of fuzzy features, which are characterized by two components: center and spread. Outliers affect the outcome of the clustering models. In trying to overcome this problem, this paper proposes a fuzzy clustering model for L-R fuzzy data, which is based on a dissimilarity measure between each pair of fuzzy data defined as an adaptive weighted sum of the L1-norms of the centers and the spreads. The proposed method is robust based on the metric and weighting approaches. It estimates the weight of a given fuzzy feature on a given fuzzy cluster by considering the relevance of that feature to the cluster; if outlier fuzzy features are present in the dataset, it tends to assign them weights close to 0.
To deeply investigate the capability of our model, i.e., alleviating undesirable effects of outlier fuzzy data, we provide a wide simulation study. We consider the ability to classify correctly and the ability to recover the true prototypes, both in the presence of outliers. The comparison made with other existing robust methods indicates that the proposed methodology is more robust to the presence of outliers than other methods. Moreover, the performance of our method decreases more slowly than others when the percentage of outliers increases. An application of the suggested method to a real-world categorical dataset is also provided.
کلیدواژه‌های انگلیسی مقاله L-R fuzzy data, robust fuzzy clustering, L1 norm, Outlier

نویسندگان مقاله Elham Eskandari |
Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran

Alireza Khastan |
Department of Mathematics, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran


نشانی اینترنتی https://ijfs.usb.ac.ir/article_7989_985934e16358ee92bee4c073e3d557df.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات