این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Fuzzy Systems، جلد ۲۰، شماره ۶، صفحات ۱۵۵-۱۶۹

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Intelligent Data Classification Using Optimized Fuzzy Neural Network and Improved Cuckoo Search Optimization
چکیده انگلیسی مقاله In data mining, classification is one of the most important steps in predicting the target class. Classification is performed by an improved model in existing work in which feature selection is performed based on the bat optimization method to increase the classification accuracy. And an Enhanced Neural Network is used for classification which includes Intuitive, Interpretable Correlated-Contours fuzzy rules. And an effective model is created based on the extraction of fuzzy rules, where data partitioning is performed via a similarity-based directional component. However, the dataset used for experimentation is noisy as well as incomplete data values. Due to incompleteness, knowledge discovery is obstructed and the result of classification is affected as well. And bat provides very slow convergence and easily falls into local optima. To solve this issue, an improved framework is introduced in which missing value imputation is performed by using k means clustering, and then for feature selection, an improved cuckoo search optimization is used. An enhanced classifier based on fuzzy logic and Alex Net neural network structure (F-ANNS) is used for classification and hybrid Ant Colony Particle Swarm Optimization (HASO) is used for optimizing parameters of the AlexNet neural network classifier. The results show that the proposed work is more effective in precision, recall, accuracy, and f-measure as shown by experimental results.
کلیدواژه‌های انگلیسی مقاله Hybrid ant colony particle swarm optimization, AlexNet neural network, cuckoo search, missing data Imputation, Artificial neural network

نویسندگان مقاله Pramoda Patro |
Department of Engineering Mathematics, Koneru Lakshmaiah Education Foundation, Hyderabad, Telangana, India, 500075

Krishna Kumar |
2Department of Applied Science and Humanities, MIT School of engineering, MIT Art Design and Technology University, Loni Kalbhor, Pune,India

G. Suresh Kumar |
Department of Engineering Mathematics, KoneruLakshmaiah Education Foundation Vaddeswaram, Guntur, Andhra Pradesh, India

Aditya Kumar Sahu |
Department of Computer science and Engineering, Amrita School of Computing, Amaravati Campus, Amrita Vishwa Vidyapeetham, Amaravati, Andhra Pradesh, 522503, India


نشانی اینترنتی https://ijfs.usb.ac.ir/article_7996_536da1988878d9f7122c9bca447d5357.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات