این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 5 دی 1404
International Journal of Transportation Engineering
، جلد ۱۱، شماره ۲، صفحات ۱۳۸۷-۱۴۰۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Comparison of Regression and Deep Learning Approaches in Modeling Time Series to Predict Air Pollutant Concentration in City of Tehran
چکیده انگلیسی مقاله
The rapid growth of urbanization and the global population have resulted in climate change, air contamination, and various human health problems. Thus, estimating air pollution indices has become important to environmental science studies. With relevant data increasingly available, machine learning frameworks have been proposed as a particularly useful method to predict air pollution. Based on four years of Tehran’s neighborhood air pollution data analysis, this paper proposes three machine learning approaches to predict NO
2
and CO concentration: Autoregressive Integrated Moving Average (ARIMA), Long Short-Term Memory Networks (LSTM), and Multiple Linear Regression (MLR). This paper compared the ability of the ARIMA, LSTM, and MLR machine learning methods to forecast the daily concentrations of NO
2
and CO at Punak air quality monitoring station, from 2017 to 2020. By applying four performance measurements, the ARIMA model displays the worst performance among the three models in all datasets with RMSE values of 47.39 and 1.29, and 0.012 and 0.01 for NO
2
and CO respectively. The LSTM and MLR models achieve the best forecasting result with RMSE = 17.6 and 6.41, MAE = 10.59 and 4.33, = 0.458 and 0.46, and RRSE =1.06 and 1.10 for NO
2
forecasting and RMSE = 0.42 and 0.32, MAE = 0.24 and 0.25, 0.96 and 0.98, and RRSE = 0.43 and 0.44 for CO forecasting.
کلیدواژههای انگلیسی مقاله
Air Pollutant, Machine Learning, urban area, No2, CO
نویسندگان مقاله
Sahar Kouhfar |
Imam Khomeini International University, College of Engineering, Qazvin, Iran
Fatemeh Bandarian |
Imam Khomeini International University, College of Engineering, Qazvin, Iran
Amir Abbas Rassafi |
Imam Khomeini International University, College of Engineering, Qazvin, Iran
نشانی اینترنتی
http://www.ijte.ir/article_181127_b52c598a5708106d91303a3109e861d6.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات