این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 20 آذر 1404
Journal of Applied Fluid Mechanics
، جلد ۱۶، شماره ۸، صفحات ۱۵۰۰-۱۵۱۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Development of an Intelligent Passive Device Generator for Road Vehicle Applications
چکیده انگلیسی مقاله
ABSTRACT
Flow control has a tremendous technological and economic impact, such as aerodynamic drag reduction on road vehicles which translates directly into fuel savings, with a consequent reduction in greenhouse gas emissions and operating costs. In recent years, machine learning has also been used to develop new approaches to flow control in place of more laborious methods, such as parametric studies, to find optimal parameters with few exceptions. This paper proposes an intelligent passive device generator (IPDG) that combines computational fluid dynamics (CFD) and genetic algorithm, more specifically, the Non-dominated Sorting Genetic Algorithm II (NSGA II). The IPDG is not application specific and can be applied to generate various devices in the given design space. In particular, it creates three-dimensional passive flow control devices with unique shapes that are aerodynamically efficient in terms of the cost function (i.e., aerodynamic drag and lift). In this paper, the IPDG is demonstrated using a rear flap and an underbody diffuser as passive devices. The three-dimensional Reynolds-averaged Navier-stokes (RANS) equations were used to solve the problem. Relative to the baseline, the IPDG generated flap-only, and diffuser-only provide drag reductions of 6.3% and 5.4%, respectively, whereas the flap-diffuser combination provides a drag reduction of 7.4%. Furthermore, the increase in the downforce is significant from 624.4% in flap-only to 4930% and 4595% in the diffuser and flap-diffuser combination. The proposed method has the potential to evolve into a universal passive device generator with the integration of machine learning.
کلیدواژههای انگلیسی مقاله
Machine learning, Flow control, Shape optimization, Genetic Algorithm, Drag reduction
نویسندگان مقاله
R. Aranha |
Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, Ontario, L1G0C5, Canada
N. A. Siddiqui |
Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, Ontario, L1G0C5, Canada
W. Y. Pao |
Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, Ontario, L1G0C5, Canada
M. Agelin-Chaab |
Faculty of Engineering and Applied Science, Ontario Tech University, Oshawa, Ontario, L1G0C5, Canada
نشانی اینترنتی
https://www.jafmonline.net/article_2239_b7d67c345d58038deb168a49c0d50a34.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات