این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Applied Fluid Mechanics، جلد ۹، شماره ۵، صفحات ۲۴۶۹-۲۴۷۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Prediction of Pressure Drop for Oil–Water Flow in Horizontal Pipes using an Artificial Neural Network System
چکیده انگلیسی مقاله In this study, pressure drop for oil–water flow in horizontal pipes is represented by using artificial neural network (ANN). Results were compared with Al-Wahaibi correlation and Two-fluid model. This research has used a multilayer feed forward network with Levenberg Marquardt back propagation training for prediction of pressure drop. Original data were divided into two parts where 80% of data was used as training data and remaining 20% of data was used for testing. In this method inputs are oil superficial velocity, water superficial velocity, ratio of density, ratio of viscosity, diameter of pipe and roughness of the pipe wall. The number of neurons is set on four. The feasibility of ANN, Al-Wahaibi correlation and Two-fluid model has been tested against 11 pressure drop data sources. The average absolute percent error of Al-Wahaibi correlation and two-fluid model are 12.73 and 15.84 while this average for the same systems using neural network is only 6.36.so the ANN is in good agreement with experimental data.
کلیدواژه‌های انگلیسی مقاله Oil–water flow, Neural network, Pressure drop prediction, Separated flow

نویسندگان مقاله A. A. Amooey |
Department of Chemical Engineering, University of Mazandaran, Babolsar, Iran


نشانی اینترنتی https://www.jafmonline.net/article_1815_5afc18183d2d6a22bacb3b281bd5a2e2.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات