این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۹، صفحات ۱۲۷-۱۳۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An artificial neural network model for predicting the liquidity risk of Iranian private banks
چکیده انگلیسی مقاله
A highly significant financial risk is liquidity risk. Liquidity risk management is a substantial part of Basel Recommendation no. three; with regard to the importance of this risk, this recommendation directs banks to develop and implement appropriate information systems for measuring, predicting, and controlling liquidity risks. Based on its structure, size, and features, each bank manages liquidity risk using different tools and methods. This study investigated the effectiveness of artificial neural networks in predicting liquidity risk in private Iranian banks. Relying on past studies and employing accounting information, this research developed a specific structure and architecture for a multilayer perceptron neural network; then, it predicted the liquidity risk of Iranian private banks from 2009 to 2019 using neural networks plus Matlab software. The research results revealed that artificial neural networks can be used to predict liquidity risk in private Iranian banks.
کلیدواژههای انگلیسی مقاله
Keywords Modelling, Artificial Neural Networks, Liquidity risk, Accounting Indicators, Private Iranian Banks
نویسندگان مقاله
Mahdi Khosroyani |
Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Farzaneh Heidarpoor |
Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Ahmad Yaghoob-nazhad |
Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
Zahra Pourzamani |
Department of Accounting, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7269_f3d42aa3e767176fda10a36e7d038e10.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات