این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
Middle East Journal of Cancer
، جلد ۱۵، شماره ۱، صفحات ۴۰-۵۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An Ensemble Deep Learning Model for the Detection and Classification of Breast Cancer
چکیده انگلیسی مقاله
Background:
Detecting breast cancer in its early stages remains a significant challenge in the present context and is a leading cause of death among women, primarily due to delayed identification. This paper presents a practical and accurate approach based on deep learning to identify breast cancer in cytology images.
Method:
The analytical approach leverages knowledge from a related problem through a technique known as transfer learning. Convolutional neural networks (CNNs) are employed due to their remarkable performance on large datasets. Image classification architectures such as Google network (GoogleNet), Visual geographical group network (VGGNet), residual network (ResNet), and dense convolution network (DenseNet) are utilized in this approach. By applying transfer learning, the images are classified into two categories: those containing cancer cells and those without them. The performance of the proposed ensemble method is evaluated using a breast cytology image dataset.
Results:
The results of our proposed ensemble framework outperform conventional CNN models in terms of precision, recall, and F1 measures, achieving an impressive 86% prediction accuracy. Visual representations of validation graphs for each classifier demonstrate that the ensemble framework surpasses the performance of pre-trained CNN architectures.
Conclusion:
Combining the outcomes of conventional CNN architectures into an ensemble framework enhances early breast cancer detection, leading to a reduction in mortality through timely medical interventions.
کلیدواژههای انگلیسی مقاله
Biopsy, Mammography, Machine Learning, Cytology, Deep Learning
نویسندگان مقاله
Joy Christy Antony Sami |
Department of Computer Science, School of Computing, SASTRA Deemed to be University, Thanjavur, India
Umamakeswari Arumugam |
School of Computing, SASTRA Deemed to be University, Thanjavur, India
نشانی اینترنتی
https://mejc.sums.ac.ir/article_49595_5f6bbbdfd908ffccdbbd3d392f2c6b1f.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات