این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 28 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۴، شماره ۱۲، صفحات ۱۷۵-۱۸۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Hierarchical federated learning model for traffic light management in future smart
چکیده انگلیسی مقاله
The present era is marked by rapid improvement and advances in technology. Nowadays inefficient traffic light management systems can make long delays and waste energy improving the efficiency of such complex systems to save energy and reduce air pollution in future smart cities. In this paper, we propose to take real-time traffic information from the surrounding environment. Such a process, which is called profilization constantly gathers and analyses information for vehicles and pedestrians throughout smart cities in order to fairly predict their actions and behaviours. We develop an efficient multi-level traffic light control system to schedule traffic signals’ duration based on a distributed profile database, which is generated by embedding sensors in streets, Vehicles and everywhere. We deploy pervasive deep learning models from the cloud to users (vehicles, bikes and pedestrians) to learn and control the traffic lights. In the cloud-level learning model, the maximum waiting time of different vehicles and pedestrians is calculated based on their profiles. The profilization process is a constant learning process throughout the whole city at the user level. Each vehicle deploys a separate learning model (decision-making) based on its average and maximum speed in a different area, waiting times at the intersections and possible trips and destinations. Such a multi-level deep learning model in the level of intersection and cloud aims to locally schedule the traffic with deadlines toward their destinations within a certain period. The results show that the proposed multi-level traffic light system can significantly improve the efficiency of the traffic system in future smart cities.
کلیدواژههای انگلیسی مقاله
Traffic light system, Smart Cities, Deep learning
نویسندگان مقاله
Alireza Soleimany |
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
Yousef Farhang |
Department of Computer Engineering, Khoy Branch, Islamic Azad University, Khoy, Iran
Amin Babazadeh Sangar |
Department of Computer Engineering, Urmia Branch, Islamic Azad University, Urmia, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7446_058838c4ce35a19d3f0f312eeade190c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات