این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۱۱، شماره ۴، صفحات ۵۲۵-۵۳۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Autoencoder-PCA-based Online Supervised Feature Extraction-Selection Approach
چکیده انگلیسی مقاله Due to the growing number of data-driven approaches, especially in artificial intelligence and machine learning, extracting appropriate information from the gathered data with the best performance is a remarkable challenge. The other important aspect of this issue is storage costs. The principal component analysis (PCA) and autoencoders (AEs) are samples of the typical feature extraction methods in data science and machine learning that are widely used in various approaches. The current work integrates the advantages of AEs and PCA for presenting an online supervised feature extraction selection method. Accordingly, the desired labels for the final model are involved in the feature extraction procedure and embedded in the PCA method as well. Also, stacking the nonlinear autoencoder layers with the PCA algorithm eliminated the kernel selection of the traditional kernel PCA methods. Besides the performance improvement proved by the experimental results, the main advantage of the proposed method is that, in contrast with the traditional PCA approaches, the model has no requirement for all samples to feature extraction. As regards the previous works, the proposed method can outperform the other state-of-the-art ones in terms of accuracy and authenticity for feature extraction.
کلیدواژه‌های انگلیسی مقاله Principal Component Analysis (PCA), online PCA, autoencoder, stacked autoencoder, semi-supervised learning

نویسندگان مقاله Amir Mehrabinezhad |
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

Mohammad Teshnelab |
Faculty of Electronic and Computer Engineering Department, K.N Toosi University of Technology, Tehran, Iran.

Arash Sharifi |
Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.


نشانی اینترنتی https://jad.shahroodut.ac.ir/article_2994_e204f4d28398fdfebe00d17a34901943.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات