این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۱، شماره ۴، صفحات ۵۴۷-۵۵۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Using Convolutional Neural Network to Enhance Classification Accuracy of Cancerous Lung Masses from CT Scan Images
چکیده انگلیسی مقاله
Lung cancer is a highly serious illness, and detecting cancer cells early significantly enhances patients' chances of recovery. Doctors regularly examine a large number of CT scan images, which can lead to fatigue and errors. Therefore, there is a need to create a tool that can automatically detect and classify lung nodules in their early stages. Computer-aided diagnosis systems, often employing image processing and machine learning techniques, assist radiologists in identifying and categorizing these nodules. Previous studies have often used complex models or pre-trained networks that demand significant computational power and a long time to execute. Our goal is to achieve accurate diagnosis without the need for extensive computational resources. We introduce a simple convolutional neural network with only two convolution layers, capable of accurately classifying nodules without requiring advanced computing capabilities. We conducted training and validation on two datasets, LIDC-IDRI and LUNA16, achieving impressive accuracies of 99.7% and 97.52%, respectively. These results demonstrate the superior accuracy of our proposed model compared to state-of-the-art research papers.
کلیدواژههای انگلیسی مقاله
Lung cancer, deep learning, LIDC-IDRI, LUNA16, Rotated
نویسندگان مقاله
Mohammad Mahdi Nakhaie |
Ershad Damavand Institute of Higher Education, Tehran, Iran.
Sasan Karamizadeh |
Ershad Damavand Institute of Higher Education, Tehran, Iran.
Mohammad Ebrahim Shiri |
Amirkabir University of Technology, Tehran, Iran.
Kambiz Badie |
E-Content & E-Services Research Group, IT Research Faculty, ICT Research Institute, Karegar, Tehran, 14155-3961, Tehran, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_3004_275950acf15bb3ffa71fcda3a0d031cb.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات