این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Medical Physics، جلد ۲۰، شماره ۵، صفحات ۲۹۸-۳۰۴

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Random-Forest Model Prediction of Dose Distribution In InsensityModulated Radiation Therapy (IMRT) Planning for Lung Cancer
چکیده انگلیسی مقاله Introduction: Machine-learning models have been widely used to predict dose distribution in therapy planning such as Intensity Modulated Radiation Therapy (IMRT). Random-forest is one of the machine learning models which can reduce output bias by using the average value all of estimators.Material and Methods: Planning data in Digital Imaging and Communications in Medicine (DICOM) format is exported to Comma Separated Values (CSV). Then, used to random-forest algorithm that will be trained using 7-fold validation and then the model will be evaluated with new data, i.e., data that the model has never seen before. The data evaluated were the parameters to obtain Homogenety Index (HI) for the target organ, whereas the mean and max dose for organs at risk (OARs) were evaluated. Statistical analysis were also carried out to assess the significant difference between the predicted value and the true value.Results: Random-forest was able to predict the true value with errors evaluated using Mean Absolute Error (MAE) on Planning Target Volume (PTV) features D2 (0.012), D50 (0.015) and D98 (0.018) as well as at OAR features (Dmean and  Dmax) of the right lung (0.104 and 0.228), left lung (0.094 and 0.27), heart (0.088 and 0.267), spinal cord (0.069 and 0.121) and (V95) Body (0.094). Based on the results of statistical tests, p >0.05, there is no significant difference between the two data.Conclusion: Random-forest regressor is able to predict the dose value with the smallest difference in PTV features.
کلیدواژه‌های انگلیسی مقاله Radiation Dose Prediction Instensity, Modulated Radiotherapy Machine Learning

نویسندگان مقاله | Ramlah Ramlah
Department of Physics, Faculty of Mathematics and Natural Sciences, Indonesia University, Depok, 16424, West Java, Indonesia


| Muhammad Fadli
Department of Radiotherapy, MRCCC Siloam Hospital Semanggi, Jakarta, 12930, Indonesia


| Joel Valerian
Department of Physics, Faculty of Mathematics and Natural Sciences, Indonesia University, Depok, 16424, West Java, Indonesia


| Prawito Prajitno
Department of Physics, Faculty of Mathematics and Natural Sciences, Indonesia University, Depok, 16424, West Java, Indonesia


| Dwi Seno Sihono
Department of Physics, Faculty of Mathematics and Natural Sciences, Indonesia University, Depok, 16424, West Java, Indonesia



نشانی اینترنتی https://ijmp.mums.ac.ir/article_20842.html
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات