این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
ماشین بینایی و پردازش تصویر، جلد ۱۰، شماره ۴، صفحات ۴۹-۵۹

عنوان فارسی بهبود شبکه های Unet برای قطعه بندی تصاویر پزشکی با اضافه کردن لایه های مکانیزم توجه
چکیده فارسی مقاله قطعه بندی تصاویر پزشکی یکی از مهم ترین گام ها در تحلیل تصاویر پزشکی، جهت بهبود تشخیص و یافته ها است. یکی از متداول ترین روش های قطعه بندی در یادگیری عمیق، استفاده از شبکه های Unet است. وجود لایه های متراکم در قسمت رمزگشای Unet، اجازه استخراج اطلاعات از لایه های عمیق تر را نمی دهد؛ همچنین به علت محدودیت میدان دریافتی هسته های کانولوشن، اطلاعات و وابستگی های دوربرد به خوبی در نظر گرفته نمی شوند. در این مقاله، هدف طراحی یک ساختار در اتصالات پرش به منظور کاهش شکاف معنایی بین ناحیه رمزگذار و رمزگشا است. استخراج بهتر و تمرکز بیشتر برروی ویژگی های محلی و سراسری در مجموعه داده های مختلف، از ویژگی های این ساختار است.همچنین یک ساختار توجه به منظور کاهش پارامترهای شبکه و بهبود نتایج، در گلوگاه شبکه طراحی شده است. این روش برروی 6 مجموعه داده پزشکی ارزیابی شده است که نتایج به دست آمده در دو معیار ارزیابی Diceو Iou نشان می دهد مدل پیشنهاد شده نتایج بهتری نسبت به Unet و روش های مبتنی بر آن دارد.
کلیدواژه‌های فارسی مقاله قطعه بندی تصاویر پزشکی، شبکه های عصبی پیچشی، مکانیزم توجه، یادگیری عمیق، Unet،

عنوان انگلیسی Improving Unet Networks for Medical Image Segmentation by adding Attention Mechanism Layers
چکیده انگلیسی مقاله Medical image segmentation is one of the most important steps in medical image analysis to improve diagnosis and findings. One of the most common segmentation methods in deep learning is the use of Unet networks. The presence of overlapping layers in the Unet decoder does not allow extracting information from deeper layers. Also, due to the limited range of the received field of convolution cores, long-range information and dependencies are not considered well. In this article, our goal is to place a structure in the area between encoder and decoder in the Unet model in order to fill the semantic gap between the encoder and decoder area and better extract features by paying attention to local and global features. This model makes the target region more prominent in different medical datasets. We have conducted our experiment on 6 medical data sets, and the results obtained in two evaluation criteria, Dice and Iou, show that our proposed model has better results than Unet and based methods.
کلیدواژه‌های انگلیسی مقاله قطعه بندی تصاویر پزشکی, شبکه های عصبی پیچشی, مکانیزم توجه, یادگیری عمیق, Unet

نویسندگان مقاله محمد رجب قانع |
کارشناس ارشد مهندسی کامپیوتر از دانشکده فنی و مهندسی دانشگاه شهید باهنر، کرمان ، ایران

عباس بحرالعلوم |
بخش مهندسی کامپیوتر ،دانشکده فنی و مهندسی ، دانشگاه شهید باهنر کرمان

مهدی افتخاری |
بخش مهندسی کامپیوتر، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان


نشانی اینترنتی https://jmvip.sinaweb.net/article_188497_42096f05f8a4a0ab1f9ce77da610244c.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات