این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
هوش محاسباتی در مهندسی برق، جلد ۱۴، شماره ۴، صفحات ۱-۱۶

عنوان فارسی Online state estimation of power system despite faulty measurement data using the composition of ANFIS with Grasshopper Algorithm
چکیده فارسی مقاله -
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Online state estimation of power system despite faulty measurement data using the composition of ANFIS with Grasshopper Algorithm
چکیده انگلیسی مقاله In this paper, we propose a novel state estimation plan using Adaptive Neuro-Fuzzy Inference System (ANFIS). To increase the speed and accuracy of estimation, an individual ANFIS is used for each bus. To improve the accuracy of training, the grasshopper optimization algorithm (GOA) is used for the training and optimization of ANFIS parameters. The main advantage of GOA training of ANFIS parameters is the increase in speed and accuracy in estimating power system state variables. One of the main features of the proposed design is its ability to provide an appropriate state estimation when incomplete data is sent to the control center due to the disconnection of communication or the failure of the measurement devices. The recovery of the missed data is implemented by the Group Method of Data Handling (GMDH) neural network. The GMDH neural network is widely used due to its proper speed for function estimation and approximation. Incomplete information obtained from measurements to estimate the state is processed by the GMDH neural network to recover lost information. The output of this neural network, which is the retrieval of complete measurement information, is given to ANFIS to estimate the state of the power system as input.
کلیدواژه‌های انگلیسی مقاله State Estimation, Adaptive Neuro-Fuzzy Inference System (ANFIS), Grasshopper optimization algorithm, Group Method of Data Handling (GMDH) eural network

نویسندگان مقاله آرش اسماعیلی |
گروه قدرت، دانشکده مهندسی برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران

اصغر اکبری فرود |
دانشکده برق و کامپیوتر، دانشگاه سمنان، سمنان، ایران


نشانی اینترنتی https://isee.ui.ac.ir/article_27512_fec5a9c35e25a2b568a663b16aa3a21b.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات