این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Medical Physics، جلد ۲۱، شماره ۱، صفحات ۸-۱۵

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Predicting Mammographic Breast Density Assessment Using Artificial Neural Networks
چکیده انگلیسی مقاله Introduction: Mammographic density is a significant risk factor for breast cancer. Classification of mammographic density based on Breast Imaging Reporting and Data System (BI-RADS) is usually used to describe breast density categories but the visual assessment can have some restrictions in a routine check in the screening mammography centers. The object of this study was to investigate the effectiveness of artificial neural networks in predicting breast density, based on the clinical patient dataset in a University hospital.Material and Methods: In this study, mammographic breast density was assessed for 219 women who underwent digital mammography screening using Volpara software. A model based on the Multi-Layer Perceptron Neural Network was trained to predict patient density by identifying the (dense vs. non-dense) breast density categories. The predictive model applied to the classification was examined by the Receiver operating characteristic (ROC) curve.Results: The results show that the model predicted the breast density of patients with a classification rate of 98.2%. In addition, the area under the curve (AUC) was 0.998, signifying a high level of classification accuracy.Conclusion: The use of artificial neural networks is useful for predicting patients breast density based on clinical mammograms.
کلیدواژه‌های انگلیسی مقاله Artificial Neural Networks, Mammography, Breast Density, Breast Cancer

نویسندگان مقاله | Soumaya Boujemaa
Department physic, faculty of sciences Rabat, University mohamed V


| Youssef Bouzekraoui
Hassan First University of Settat, High Institute of Health Sciences, Laboratory of Sciences and Health Technologies, Settat, Morocco


| FARIDA BENTAYEB
Departement of Physics, Laboratory of High Energy Physics, Modelling and Simulation, Faculty of Science, Mohammed V Agdal University, Rabat, Kingdom of Morocco



نشانی اینترنتی https://ijmp.mums.ac.ir/article_21839.html
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات