این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۵، شماره ۳، صفحات ۱۲۵-۱۴۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Improving image segmentation using artificial neural networks and evolutionary algorithms
چکیده انگلیسی مقاله Image segmentation can be used in object recognition systems. Today, it is considered in most branches of science and industry, and in many of these branches the identification of the main components of the image is very important. For example, automatic detection and tracking of moving targets in military applications and segregation of different products in industrial applications, identification of road signs, segmentation of colonies, land use and land cover classification. It is also widely used in medicine, such as diagnosing brain and tumors and self-driving. In this study, image sections are performed by a feature extraction process using a neural network. In the process of applying the neural network method, optimization was performed using the ant colony algorithm. The results show that the identification of image segments using the neural network has an accuracy of 87% alone, but increased to 90% after optimization using ant colony optimization.
کلیدواژه‌های انگلیسی مقاله Image Segmentation, Neural Network, Ant colony optimization algorithm

نویسندگان مقاله Mohammadreza Fadavi Amiri |
Faculty of Computer Engineering, Shomal University, Amol 46161-84596, Mazandaran, Iran

Maral Hosseinzadeh |
Faculty of Computer Engineering, Shomal University, Amol 46161-84596, Mazandaran, Iran

Seyyed Mohammad Reza Hashemi |
Faculty of Computer Engineering Department, Shahrood University of Technology, Shahrood, Semnan, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_7629_1fd147a2ce3d5b349724abd3c10a330e.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات