این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۵، شماره ۳، صفحات ۲۲۹-۲۳۶
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Application of machine learning to predict daylight glare probability
چکیده انگلیسی مقاله
Daylight Glare Probability (DGP), founded on the latest glare metric, is the main challenge related to daylight glare inside buildings. Studies showed that the DGP depends on several factors, such as vertical illuminance values at the human eye factor, which is an essential parameter. In this study, we implement machine learning techniques to estimate and predict the DGP classifications, which are imperceptible, perceptible, disturbing, and intolerable based on the various influenced factors. A series of machine learning simulations have been conducted to investigate how those factors can be influenced by the degree of glare and classifications. In this research, different machine learning algorithms such as Artificial Neural Networks (multi-layer perceptron), K-Nearest Neighbors (KNN), Support Vector Machines (SVM), and Random Forest (RF) were employed to determine or predict the DGP classifications accurately. Results showed that the RF is the most effective method to classify the DGP and can predict with up to 99 % accuracy. Furthermore, the results displayed that vertical illuminance at eye level (lux), Ev, compared with other factors, has the largest influence on the DGP classifications. Consequently, machine learning is a powerful, promising, and viable option to implement in building constructions to optimize energy consumption, a global issue in the current century.
کلیدواژههای انگلیسی مقاله
Daylight Glare Probability (DGP), vertical illuminance at eye level (lux), Ev, machine learning, Artificial Neural Network, Building constructions
نویسندگان مقاله
Seyedeh Tabassom Beykaei |
Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran
Fatemeh Mozaffari Ghadikolaei |
Department of Architecture, Sari Branch, Islamic Azad University, Sari, Iran
Abdollah Ebrahimi |
Department of Architecture , Sari Branch, Islamic Azad University, Sari, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_7707_3ae8fdde12a897cf28dcc2acc8f7b61e.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات