این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Basic and Clinical Neuroscience
، جلد ۱۵، شماره ۱، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of Stroke after Covid-19 Infection
چکیده انگلیسی مقاله
Background:
Although several different studies have
been published about
COVID-19, ischemic stroke is known yet as a complicated problem for COVID-19 patients. Scientific reports indicate that in many cases, the incidence of stroke in patients with COVID-19 leads to death.
Objectives:
The obtained mathematical equation in this study can help physicians’ decision-making about treatment and identification of influential clinical factors for early diagnosis.
Methods
:
In this
retrospective
study,
data of 128 patients
between March and September 2020
including demographic information, clinical characteristics and laboratory parameters of patients were collected and analyzed statistically
. A
logistic regression (LR) model was developed to identify the
significant
variables for the prediction of
stroke incidence
in patients with
COVID-19.
Results:
Clinical characteristics and laboratory parameters
for 128 patients (including 76 males, 52 females; with mean age 57.109 ±
15.97
years) were considered as the inputs that included:
ventilator dependence, comorbidities and laboratory tests including WBC, Neutrophil, lymphocyte, platelet count, C-Reactive Protein, Blood Urea Nitrogen, Alanine transaminase (ALT), Aspartate transaminase (AST) and LDH
. The indexes such as receiver operating characteristic–area under the curve (ROC-AUC) and accuracy, sensitivity, and specificity were considered to determine the model
cap
ability.
The accuracy of the model classification was also addressed by 93.8%. The area under the curve indicated 97.5% with a 95% confidence interval.
Conclusion:
The findings showed that ventilator dependence and Cardiac Ejection Fraction and LDH are associated with the occurrence of stroke and the proposed model can predict the stroke effectively.
کلیدواژههای انگلیسی مقاله
Logistic regression, Stroke, COVID-19, Prediction, SARS-CoV-2
نویسندگان مقاله
| Mahsa Babaee
Ph.D. Candidate – Malek Ashtar University of Technology- Industrial Engineering Faculty, Tehran, Iran.
| Karim Atashgar
Associate Professor – Malek Ashtar University of Technology- Industrial Engineering Faculty, Tehran, Iran.
| Ali Amini Harandi
Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| Atefeh Yousefi
Neurology Resident, Department of Neurology, Shohadaye Tajrish Hospital, Shahid Beheshti University of Medical Science, Tehran, Iran.
نشانی اینترنتی
http://bcn.iums.ac.ir/browse.php?a_code=A-10-3608-1&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
Computational Neuroscience
نوع مقاله منتشر شده
Original
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات