این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۶، شماره ۱، صفحات ۵-۲۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Comparative Study on Different Machine Learning Algorithms for Neonatal Diabetes Detection
چکیده انگلیسی مقاله This paper gives a performance analysis of multiple vote classifiers based on meta-classification methods for estimating the risk of diabetes. The study's dataset includes a number of biological and clinical risk variables that can result in the development of diabetes. In the analysis, classifiers like Random Forest, Logistic Regression, Gradient Boosting, Support Vector Machines, and Artificial Neural Networks were used. In the study, each classifier was trained and evaluated separately, and the outcomes were compared to those attained using meta-classification methods. Some of the meta-classifiers used in the analysis included Majority Voting, Weighted Majority Voting, and Stacking. The effectiveness of each classifier was evaluated using a number of measures, including accuracy, precision, recall, F1-score, and Area under the Curve (AUC). The results show that meta-classification techniques often outperform solo classifiers in terms of prediction precision. Random Forest and Gradient Boosting, two different classifiers, had the highest accuracy, while Logistic Regression performed the worst. The best performing meta-classifier was stacking, which achieved an accuracy of 84.25%. Weighted Majority Voting came in second (83.86%) and Majority Voting came in third (82.95%).
کلیدواژه‌های انگلیسی مقاله Voting Classifiers, Meta-Classification Technique, Diabetes Risk Prediction, Biomedical, Clinical Risk Factors, Random forest, Logistic regression, Gradient Boosting, Support Vector Machines

نویسندگان مقاله S. Thangamayan |
Saveetha School of Law, Saveetha Institute of Medical and Technical Sciences, Chennai-77, India.

Anurag Sinha |
Department of Computer Science and Information Technology, IGNOU, New Delhi, India.

Vishal Moyal |
Department of Electrical Engineering, SVKMs Institute of Technology, Dhule, M.S. 424002, India.

K. Maheswari |
CDOE, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.

Nimmala Harathi |
School of Engineering, Sree Vidyanikethan Engineering College, Andra Pradesh, India.

Ahmad Nur Budi Utama |
Faculty of Economics and Business, Universities Jambi, Indonesia.


نشانی اینترنتی https://jitm.ut.ac.ir/article_96359_2847295902b560c24b84a5aec8794dde.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات