این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۶، شماره ۱، صفحات ۴۴-۶۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Brain Tumor Image Prediction from MR Images Using CNN Based Deep Learning Networks
چکیده انگلیسی مقاله
Finding a brain tumor yourself by a human in this day and age by looking through a large quantity of magnetic-resonance-imaging (MRI) images is a procedure that is both exceedingly time consuming and prone to error. It may prevent the patient from receiving the appropriate medical therapy. Again, due to the large number of image datasets involved, completing this work may take a significant amount of time. Because of the striking visual similarity that exists between normal tissue and the cells that comprise brain tumors, the process of segmenting tumour regions can be a challenging endeavor. Therefore, it is absolutely necessary to have a system of automatic tumor detection that is extremely accurate. In this paper, we implement a system for automatically detecting and segmenting brain tumors in 2D MRI scans using a convolutional-neural-network (CNN), classical classifiers, and deep-learning (DL). In order to adequately train the algorithm, we have gathered a broad range of MRI pictures featuring a variety of tumour sizes, locations, forms, and image intensities. This research has been double-checked using the support-vector-machine (SVM) classifier and several different activation approaches (softmax, RMSProp, sigmoid). Since "Python" is a quick and efficient programming language, we use "TensorFlow" and "Keras" to develop our proposed solution. In the course of our work, CNN was able to achieve an accuracy of 99.83%, which is superior to the result that has been attained up until this point. Our CNN-based model will assist medical professionals in accurately detecting brain tumors in MRI scans, which will result in a significant rise in the rate at which patients are treated.
کلیدواژههای انگلیسی مقاله
Brain tumour, Magnetic Resonance Images (MRI), Deep learning, CNN, SVM, Image reorganization
نویسندگان مقاله
Bolleddu Sudhakar |
CSE-AIML, Geethanjali College of Engineering and Technology, Hyderabad, Telangana, India.
Poornima A Sikrant |
Sri Ramachandra Faculty of Management Sciences, Sri Ramachandra Institute of Higher Education and Research, Chennai, Tamil Nadu, India.
Mudarakola Lakshmi Prasad |
Computing Science and Engineering, Institute of Aeronautical Engineering, Hyderabad, Telangana, India.
S Bhargavi Latha |
School of Computer Science and Engineering, REVA University, Bengaluru, Karnataka, India.
Golconda Ravi Kumar |
Computer Science and Engineering, CMR College of Engineering & Technology, Hyderabad, Telangana, India.
Sabavath Sarika |
Computer Science and Engineering, CMR Institute of Technology, Hyderabad, Telangana, India.
Pundru Chandra Shaker Reddy |
School of Computing Science and Artificial Intelligence, SR University, Warangal-506371, Telangana, India.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_96374_cf92c34ea2cbd8b176506a0589be0970.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات