این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
مدیریت فناوری اطلاعات، جلد ۱۶، شماره ۱، صفحات ۱۴۹-۱۶۶

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Clinical Healthcare Applications: Efficient Techniques for Heart Failure Prediction Using Novel Ensemble Model
چکیده انگلیسی مقاله Heart failure is a severe medical ailment that significantly impacts patients’ well-being and the healthcare system. For improved results, early detection and immediate treatment are essential. This work aims to develop and evaluate predictive models by applying sophisticated ensemble learning techniques. In order to forecast heart failure, we used a clinical dataset from Kaggle. We used the well-known ensemble techniques of bagging and random forest (RF) to create our models. With a predicted accuracy of 82.74%, the RF technique, renowned for its versatility and capacity to handle complex data linkages, fared well. The bagging technique, which employs several models and bootstrapped samples, also demonstrated a noteworthy accuracy of 83.98%. The proposed model achieved an accuracy of 90.54%. These results emphasize the value of group learning in predicting cardiac failure. The area under the ROC curve (AUC) was another metric to assess the model’s discriminative ability, and our model achieved 94% AUC. This study dramatically improves the prognostic modeling for heart failure. The findings have extensive implications for clinical practice and healthcare systems and offer a valuable tool for early detection and intervention in cases of heart failure.
کلیدواژه‌های انگلیسی مقاله Machine learning, Heart failure, Cardiovascular diseases, Ensemble learning, Healthcare

نویسندگان مقاله Ashwitha Anni Poojari |
Department of Information Technology, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, Karnataka, India.

Sivaji Uppala |
Department of IT, Institute of Aeronautical Engineering, Dundigal, Hyderabad.

Bhavani Rupa Devi |
Department of CSE, Annamacharya Institute of Technology and Sciences, Tirupati

Gandela Sujatha |
Department of Electronics and Communication, Sri Venkateswara College of Engineering Karakambadi road, Tirupati, Andrapradesh, India.

Konduru Reddy Madhavi |
School of Computing, Mohan Babu University, Tirupati, A.P., India.

Tammineni Ravi Kumar |
Department of CSE, Aditya Institute of Technology and Management, Tekkali, A.P.


نشانی اینترنتی https://jitm.ut.ac.ir/article_96380_ee124370e9b7a2568941b745903a130a.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات