این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۶، شماره ۱، صفحات ۱۶۷-۱۸۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
An Intelligent Heart Disease Prediction by Machine Learning Using Optimization Algorithm
چکیده انگلیسی مقاله
Heart and circulatory system diseases are often referred to as cardiovascular disease (CVD). The health and efficiency of the heart are crucial to human survival. CVD has become a primary cause of demise in recent years. According to data provided by the World-Health-Organization (WHO), CVD were conscientious for the deaths of 18.6M people in 2017. Biomedical care, healthcare, and disease prediction are just few of the fields making use of cutting-edge skills like machine learning (ML) and deep learning (DL). Utilizing the CVD dataset from the UCI Machine-Repository, this article aims to improve the accuracy of cardiac disease diagnosis. Improved precision and sensitivity in diagnosing heart disease by the use of an optimization algorithm is possible. Optimization is the process of evaluating a number of potential answers to a problem and selecting the best one. Support-Machine-Vector (SVM), K-Nearest-Neighbor (KNN), Naïve-Bayes (NB), Artificial-Neural-Network (ANN), Random-Forest (RF), and Gradient-Descent-Optimization (GDO) are just some of the ML strategies that have been utilized. Predicting Cardiovascular Disease with Intelligence, the best results may be obtained from the set of considered classification techniques, and this is where the GDO approach comes in. It has been evaluated and found to have an accuracy of 99.62 percent. The sensitivity and specificity were likewise measured at 99.65% and 98.54%, respectively. According to the findings, the proposed unique optimized algorithm has the potential to serve as a useful healthcare examination system for the timely prediction of CVD and for the study of such conditions.
کلیدواژههای انگلیسی مقاله
Optimization Algorithm, cardiovascular disease, Prediction, Gradient Descent, Machine learning, neural networks, Deep learning
نویسندگان مقاله
Jebakumar Immanuel D |
Computer Science and Engineering, Karpagam Institute of Technology, Coimbatore, Tamil Nadu, India.
Sathesh Abraham Leo E |
Computer Science and Engineering, Kings Engineering College, Chennai, Tamil Nadu, India.
Saranya S |
Computer Science and Engineering, N.G.P. Institute of Technology, Coimbatore, Tamil Nadu, India.
Nithiya C |
Computer Science and Engineering, KIT-Kalaignar Karunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India.
Arunkumar K |
Computer Science and Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India.
Pradeep D |
Computer Science and Engineering, M.K Umarasamy College of Engineering, Karur, Tamil Nadu, India.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_96381_ff15626f72469ec19cb1499c16da3ba3.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات