این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
International Journal of Nonlinear Analysis and Applications، جلد ۱۵، شماره ۵، صفحات ۱۷۷-۱۸۷

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Automatic fault diagnosis of computer networks based on a combination BP neural network and fuzzy logic
چکیده انگلیسی مقاله Today, computer network fault diagnosis is one of the key challenges experts are facing in the field of computer networks.  Therefore, achieving an automatic diagnosis system which is based on artificial intelligence methods and is able to diagnose faults with maximum accuracy and speed is of high importance. One of the methods which is studied and utilized up to now is artificial neural networks with a back propagation algorithm while using neural networks with a back propagation algorithm has two main challenges in front. The first challenge is related to the backpropagation learning type as it is a supervised learning requiring inductive knowledge driven from previous conditions. The second challenge is the long time required for training such a neural network. In this work, combining neural networks with a backpropagation algorithm and fuzzy logic is applied as a method for confronting these challenges. The result of this study shows that fuzzy clustering is able to provide the inductive knowledge required for backpropagation learning by determining the membership degree of training samples to different clusters of network faults. Also, according to the simulations taken place, implementing a fuzzy controller in determining the learning rate in each backpropagation iteration has resulted in successful outcomes. Thus, the learning speed of this algorithm has been increased in comparison to the constant learning rate mode resulted in reducing the training time duration of this neural networks.
کلیدواژه‌های انگلیسی مقاله Computer Networks Fault Diagnosis, Artificial Neural Networks, Back Propagation Algorithm, Fuzzy Clustering, Fuzzy Controller

نویسندگان مقاله Elham Bideh |
Department of Computer Engineering, Shomal University, Amol, Iran

Mohammadreza Fadavi Amiri |
Department of Computer Engineering, Shomal University, Amol, Iran

Javad Vahidi |
Department of Computer Science, Iran University of Science and Technology, Tehran, Iran

Majid Iranmanesh |
Department of Mathematics, Semnan University, Semnan, Iran


نشانی اینترنتی https://ijnaa.semnan.ac.ir/article_7820_921df85e7c257dfd5d27a10e89179a74.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات