این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
مدیریت فناوری اطلاعات
، جلد ۱۶، شماره ۲، صفحات ۱۶-۳۴
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Improving the Cross-Domain Classification of Short Text Using the Deep Transfer Learning Framework
چکیده انگلیسی مقاله
With the advent of user-generated text information on the Internet, text sentiment analysis plays an essential role in online business transactions. The expression of feelings and opinions depends on the domains, which have different distributions. In addition, each of these domains or so-called product groups has its vocabulary and peculiarities that make analysis difficult. Therefore, different methods and approaches have been developed in this area. However, most of the analysis involved a single-domain and few studies on cross-domain mood classification using deep neural networks have been performed. The aim of this study was therefore to examine the accuracy and transferability of deep learning frameworks for the cross-domain sentiment analysis of customer ratings for different product groups as well as the cross-domain sentiment classification in five categories “very positive”, “positive”, “neutral”, “negative” and “very negative”. Labels were extracted and weighted using the Long Short-Term Memory (LSTM) Recurrent Neural Network. In this study, the RNN LSTM network was used to implement a deep transfer learning framework because of its significant results in sentiment analysis. In addition, two different methods of text representation, BOW and CBOW were used. Based on the results, using deep learning models and transferring weights from the source domain to the target domain can be effective in cross-domain sentiment analysis.
کلیدواژههای انگلیسی مقاله
Sentiment analysis,Cross-Domain Sentiment Classification,Transfer Learning,Deep learning,Deep Neural Networks
نویسندگان مقاله
Afsaneh Monemi Rad |
MA., Department of Information Technology Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran.
Neda Abdolvand |
Associate Prof., Department of Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran.
Saeedeh Rajaei Harandi |
MA., Department of Information Technology Management, Faculty of Social Sciences and Economics, Alzahra University, Tehran, Iran.
نشانی اینترنتی
https://jitm.ut.ac.ir/article_96938_263d63adbdeeae2591109effee4931ad.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات