این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۱۲، شماره ۱، صفحات ۶۷-۸۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Application of Stacked Ensemble Techniques in Head and Neck Squamous Cell Carcinoma Prognostic Feature Subsets
چکیده انگلیسی مقاله Head and neck cancer (HNC) recurrence is ever increasing among Ghanaian men and women. Because not all machine learning classifiers are equally created, even if multiple of them suite very well for a given task, it may be very difficult to find one which performs optimally given different distributions. The stacking learns how to best combine weak classifier models to form a strong model. As a prognostic model for classifying HNSCC recurrence patterns, this study tried to identify the best stacked ensemble classifier model when the same ML classifiers for feature selection and stacked ensemble learning are used. Four stacked ensemble models; in which first one used two base classifiers: gradient boosting machine (GBM) and distributed random forest (DRF); second one used three base classifiers: GBM, DRF, and deep neural network (DNN); third one used four base classifiers: GBM, DRF, DNN, and generalized linear model (GLM); and fourth one used five base classifiers: GBM, DRF, DNN, GLM, and Naïve bayes (NB) were developed, using GBM meta-classifier in each case. The results showed that implementing stacked ensemble technique consisting of five base classifiers on gradient boosted features achieved better performance than achieved on other feature subsets, and implementing this stacked ensemble technique on gradient boosted features achieved better performance compared to other stacked ensemble techniques implemented on gradient boosted features and other feature subsets used. Learning stacked ensemble technique having five base classifiers on GBM features is clinically appropriate as a prognostic model for classifying and predicting HNSCC patients’ recurrence data.
کلیدواژه‌های انگلیسی مقاله HNSCC recurrence, Machine learning, Stacking, Feature Selection, Classification

نویسندگان مقاله Damianus Kofi Owusu |
University of Mines and Technology, Ghana.

Christiana Cynthia Nyarko |
Department of Mathematical Sciences, Faculty of Engineering, University of Mines and Technology, Tarkwa, Ghana.

Joseph Acquah |
Department of Mathematical Sciences, Faculty of Engineering, University of Mines and Technology, Tarkwa, Ghana.

Joel Yarney |
Department of Radiotherapy and Oncology, National Centre for Radiotherapy & Nuclear Medicine, Korle Bu, Accra, Ghana.


نشانی اینترنتی https://jad.shahroodut.ac.ir/article_3156_1adf9b57e023b5359755deb03ba25193.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات