این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
Journal of Rehabilitation in Civil Engineerin
، جلد ۱۲، شماره ۴، صفحات ۱۱۶-۱۳۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Development of a New Modified Sonar Inspired Optimization based on Machine Learning Methods for Evaluating Compressive of High-Performance Concrete
چکیده انگلیسی مقاله
The nonlinearity observed in high-performance concrete (HPC) can be attributed to its distinctive features. This study examines the effectiveness of expert frameworks in determining compressive strength, aiming to enhance accuracy through the development of a master artificial neural network (ANN) system utilizing the sonar inspired optimization (SIO) algorithm. The ANN model employs exploratory data to establish initial optimal weights and biases, thereby improving precision. Comparison with previous studies validates the accuracy of the proposed system, demonstrating that the SIO-ANN hybrid model offers finer estimation of high-performance concrete properties. Results consistently show a coefficient of determination (R2) exceeding 0.972 and a 50%-67% reduction in error rates compared to conventional fitting curve approaches. Parameters such as population, weight, and bias within the SIO-ANN framework are continuously updated and optimized to achieve optimal values efficiently. Additionally, the SIO-ANN model exhibits superior runtime performance compared to other models. Consequently, the proposed SIO-ANN approach emerges as a viable alternative for accurately assessing and predicting the compressive strength of high-performance concrete.
کلیدواژههای انگلیسی مقاله
High-performance concrete, Sonar inspired optimization, Optimization, Artificial Neural Network, Prediction
نویسندگان مقاله
Ali Nikkhoo |
Associate Professor, Faculty of Engineering, University of Science and Culture, Tehran, Iran
Amin Moshtagh |
Ph.D. Student, Department of Civil Engineering, University of Science and Culture, Tehran, Iran
Mehri Mehrnia |
Ph.D. Student, Department of Biomedical Engineering, Northwestern University, United States
نشانی اینترنتی
https://civiljournal.semnan.ac.ir/article_8675_9146a08d3c45afca01520549b5993589.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات