این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
ماشین بینایی و پردازش تصویر
، جلد ۳، شماره ۲، صفحات ۳۹-۵۷
عنوان فارسی
روشی مبتنی بر ماشین یادگیری سریع با هسته غیرخطی برای انتخاب نمونههای اولیه در یادگیری چندبرچسبه مقیاس بزرگ
چکیده فارسی مقاله
با وجود حجم عظیم محتوای چند رسانهای در وب، ذخیره سازی و بازیابی آنها با بکارگیری روشهای یادگیری موجود با محدودیت هایی از جمله کمبود حافظه مواجه شده است. تاثیر گذاری محدودیتهای مد نظر در روشهای یادگیری دارای مرحله آموزش مانند ماشین بردار پشتیبان (SVM) و شبکه های عصبی تا جایی است که امکان بکارگیری این روشها در کاربردهای مقیاس بزرگ تقریبا غیرممکن است. روش ماشین یادگیری سریع مبتنی بر هسته غیرخطی (KELM) یکی از روشهای قدرتمند ارائه شده در حوزه یادگیری ماشین است. اساس مرحله یادگیری در این روش مبتنی بر ساخت ماتریس هستهی نمونههای برچسبدار و محاسبه معکوس آن میباشد. از اینرو، بکارگیری این روش در محیطهای مقیاس بزرگ با وجود تعداد زیاد نمونههای برچسب دار امکانپذیر نیست. در این پژوهش به منظور حل مشکل مطرح شده در بکارگیری KELM در کاربردهای مقیاس بزرگ، روشی مبتنی بر انتخاب نمونههای اولیه با بهرهگیری از KELM در مقیاس کوچک همسایگی هر نمونه آموزش ارائه شده است. با بکارگیری روش انتخاب نمونههای اولیه ارائه شده، حجم مجموعه آموزش کاهش مییابد. بنابراین امکان استفاده از روش یادگیری KELM در کاربردهای مقیاس بزرگ فراهم میشود. از آنجایی که کاربردهای حوزه چند رسانه ای وب به صورت چندبرچسبه میباشند، روش ارائه شده در انتخاب نمونههای اولیه، مبتنی بر کاربردهای چندبرچسبه مانند شرحگذاری خودکار تصاویر است. نتایج آزمایشهای تجربی بر روی دادگان چندبرچسبه مقیاس بزرگ NUS-WIDE و نسخههای آن مانندObject، Scene و Lite بیانگر کارایی روش ارائه شده در حل محدودیتهای بکارگیری KELM در کاربردهای چندبرچسبه مقیاس بزرگ با انتخاب نمونههای اولیه دارد.
کلیدواژههای فارسی مقاله
عنوان انگلیسی
A prototype selection method based on kernel extreme learning machine in large-scale multi-label learning
چکیده انگلیسی مقاله
With a largeamount of multimedia content in the web, storage and retrieval of them by classical learning methods dealt with some major challenges like memory restriction. These limitations in some of learning algorithms like SVM and ANN is so serious that these algorithms cannot be employed in large-scale learning context. Kernel Extreme Learning Machine (KELM) algorithm is one of the powerful methods in machine learning. Learning phase of this method is based on constructing kernel matrix of labeled instances and calculating inverse of it. So, employing this method in large scale learning context with a lot of labeled instances is not feasible. In this research to overcome limitation of employing the KELM in large-scale multi-label learning, a new approach is proposed. The proposed approach is based on prototype selection in neighborhood of each training instance. By using the proposed approach, the size of training set is reduced. So, classical learning methods can be applied on reduced training set. Since multimedia contents are basically multi-label, the proposed prototype selection approach is based on multi-label domains like automatic image annotation. Experimental results on NUS-WIDE large-scale multi-label image set and three other versions include Object, Scene and Lite indicated the effectiveness of the proposed approach in solving the limitation of employing KELM method in large-scale multi-label learning.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
حمید کارگرشورکی | kargar shouroki
دانشجوی کارشناسی ارشد دانشکده مهندسی برق و کامپیوتر، دانشگاه یزد
سازمان اصلی تایید شده
: دانشگاه یزد (Yazd university)
محمدعلی زارع چاهوکی | mohammad ali zare chahouki
دانشکده مهندسی برق و کامپیوتر، دانشگاه یزد
سازمان اصلی تایید شده
: دانشگاه یزد (Yazd university)
نشانی اینترنتی
http://jmvip.sinaweb.net/article_23959_cd4051cb55dc710218836855dea67d45.pdf
فایل مقاله
اشکال در دسترسی به فایل - ./files/site1/rds_journals/1041/article-1041-314212.pdf
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات