این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
Journal of Mining and Environment
، جلد ۱۵، شماره ۳، صفحات ۸۸۹-۹۰۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of Iron Ore Grade using Artificial Neural Network, Computational Method, and Geo-statistical Technique at El-Gezera Area, Western Desert, Egypt
چکیده انگلیسی مقاله
The mineral resource estimation process necessitates a precise prediction of the grade based on limited drilling data. Grade is crucial factor in the selection of various mining projects for investment and development. When stationary requirements are not met, geo-statistical approaches for reserve estimation are challenging to apply. Artificial Neural Networks (ANNs) are a better alternative to geo-statistical techniques since they take less processing time to create and apply. For forecasting the iron ore grade at El-Gezera region in El- Baharya Oasis, Western Desert of Egypt, a novel Artificial Neural Network (ANN) model, geo-statistical methods (Variograms and Ordinary kriging), and Triangulation Irregular Network (TIN) were employed in this study. The geo-statistical models and TIN technique revealed a distinct distribution of iron ore elements in the studied area. Initially, the tan sigmoid and logistic sigmoid functions at various numbers of neurons were compared to choose the best ANN model of one and two hidden layers using the Levenberg-Marquardt pure-linear output function. The presented ANN model estimates the iron ore as a function of the grades of Cl%, SiO
2
%, and MnO% with a correlation factor of 0.94. The proposed ANN model can be applied to any other dataset within the range with acceptable accuracy.
کلیدواژههای انگلیسی مقاله
Artificial Neural Network, Iron ore grade, El-Gezera Area, Geostatistics, GIS
نویسندگان مقاله
Ashraf Ismael |
Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Abdelrahem Khalefa Embaby |
Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Faissal Ali |
Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Hussin Farag |
Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Sayed Gomaa |
Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Mohamed Elwageeh |
Mining, Petroleum, and Metallurgical Engineering Department, Faculty of Engineering, Cairo University, Cairo, Egypt
Bahaa Mousa |
Department of Mining and Petroleum Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_3036_065e201426858316df368a69ea7e085e.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات