این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
Journal of Mining and Environment
، جلد ۱۵، شماره ۳، صفحات ۱۰۱۱-۱۰۲۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Copper Ore Grade Prediction using Machine Learning Techniques in a Copper Deposit
چکیده انگلیسی مقاله
The objective of this research work to employ machine learning techniques including Multilayer Perceptron Artificial Neural Networks (ANN-MLP), Random Forests (RFs), Extreme Gradient Boosting (XGBoost), and Support Vector Regression (SVR) to predict copper ore grades in a copper deposit located in Peru. The models were developed using 5654 composites containing available geological information (rock type), as well as the locations of the samples (east, north, and altitude) and secondary ore grade (Mo) obtained from drilling wells. The data was divided into 10% (565 composites) for testing, 10% (565 composites) for validation, and 80% (4523 composites) for training. The evaluation metrics included SSE (Sum of Squared Errors), RMSE (Root Mean Squared Error), NMSE (Normalized Mean Squared Error), and R² (Coefficient of Determination). The XGBoost model could predict the ore grade with an SSE of 15.67, RMSE = 0.17, NMSE = 0.34, and R² = 0.66, the RFs model with an SSE of 16.40, RMSE = 0.17, NMSE = 0.36, and R² = 0.65, the SVR model with an SSE of 19.94, RMSE = 0.19, NMSE = 0.43, and R² = 0.57, and the ANN-MLP model with an SSE = 21.00, RMSE = 0.19, NMSE = 0.46, and R² = 0.55. In conclusion, the XGBoost model was the most effective in predicting copper ore grades.
کلیدواژههای انگلیسی مقاله
Multilayer Perceptron Artificial Neural Network, Random Forests, Extreme Gradient Boosting, Support Vector Regression
نویسندگان مقاله
Jairo Jhonatan Marquina Araujo |
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Marco Antonio Cotrina Teatino |
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
José Nestor Mamani Quispe |
Department of Chemical Engineering, Faculty of Engineering, National University of the Altiplano of Puno, Puno, Perú
Eduardo Manuel Noriega Vidal |
Department of Mining Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Peru
Juan Antonio Vega Gonzalez |
Departamento de Ingeniería Metalurgica, Universidad Nacional de Trujillo, Trujillo, Perú
Juan Vega-Gonzalez |
Department of Metallurgical Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú
Juan Cruz-Galvez |
Department of Metallurgical Engineering, Faculty of Engineering, National University of Trujillo, Trujillo, Perú
نشانی اینترنتی
https://jme.shahroodut.ac.ir/article_3045_2866f0f375a36bbf0286afdf88b5faed.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات