این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Journal of Medical Signals and Sensors
، جلد ۷، شماره ۱، صفحات ۳۹-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
accelerating the GPU-based execution of edge detection algorithms
چکیده انگلیسی مقاله
Real-time image processing is used in a wide variety of applications like those in medical care andindustrial processes. This technique in medical care has the ability to display important patientinformation graphi graphically, which can supplement and help the treatment process. Medical decisionsmade based on real-time images are more accurate and reliable. According to the recent researches,graphic processing unit (GPU) programming is a useful method for improving the speed and quality ofmedical image processing and is one of the ways of real-time image processing. Edge detection is anearly stage in most of the image processing methods for the extraction of features and object segmentsfrom a raw image. The Canny method, Sobel and Prewitt filters, and the Roberts’ Cross technique aresome examples of edge detection algorithms that are widely used in image processing and machinevision. In this work, these algorithms are implemented using the Compute Unified Device Architecture(CUDA), Open Source Computer Vision (OpenCV), and Matrix Laboratory (MATLAB) platforms. Anexisting parallel method for Canny approach has been modified further to run in a fully parallel manner.This has been achieved by replacing the breadth-first search procedure with a parallel method. Thesealgorithms have been compared by testing them on a database of optical coherence tomography images.The comparison of results shows that the proposed implementation of the Canny method on GPU usingthe CUDA platform improves the speed of execution by 2–100× compared to the central processing unitbasedimplementation using the OpenCV and MATLAB platforms.
کلیدواژههای انگلیسی مقاله
نویسندگان مقاله
زهرا عمرانی | zahra emrani
سروش باطنی | soroosh bateni
حسین ربانی | hossein rabbani
نشانی اینترنتی
http://www.jmss.mui.ac.ir/index.php/jmss/article/view/363
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
Original Articles
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات