این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
International Journal of Mining and Geo-Engineering
، جلد ۵۸، شماره ۲، صفحات ۲۱۱-۲۲۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Blasted muckpile modeling in open pit mines using an artificial neural network designed by genetic algorithm
چکیده انگلیسی مقاله
The shape of a blasted rock mass, or simply muckpile, affects the efficiency of loading machines. Muckpile is defined with two main parameters known as throw and drop, while several blasting parameters will influence the muckpile shape. This paper studies the prediction of muckpile shape in open-pit mines by applying an artificial neural network designed by a genetic algorithm. In that regard, a genetic algorithm has been used in preparing the neural network architecture and parameters. Moreover, input variables have been reduced using the principal component analysis. Finally, the best models for predicting throw and drop are determined. Analyzing the performance of the proposed models indicates their superiority in predicting muckpile shape. As a result, the Mean Squared Error of throw is 0.53 for train data and 1.24 for test data. While for the drop, the errors are 0.45 and 0.58 for the training and testing data. Furthermore, sensitivity analysis shows that specific-charge effects drop and throw more.
کلیدواژههای انگلیسی مقاله
Hybrid genetic algorithm neural network,blasting, muckpile,Principal component analysis
نویسندگان مقاله
S. M. Mahdi Mirabedi |
School of Mining, College of Engineering University of Tehran, Tehran, Iran.
Mehdi Rahmanpour |
School of Mining, College of Engineering University of Tehran, Tehran, Iran.
Yousef Azimi |
Research Centre for Environment and Sustainable Development, RCESD, Department of Environment, Tehran, Iran.
Hassan Bakhshandeh Amnieh |
School of Mining, College of Engineering University of Tehran, Tehran, Iran.
نشانی اینترنتی
https://ijmge.ut.ac.ir/article_95683_ff847dd6620727176c72cccf928ddeff.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات