این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
Iranian Journal of Biotechnology
، جلد ۲۲، شماره ۲، صفحات ۱۱۰-۱۱۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
In-Silico Method for Predicting Pathogenic Missense Variants Using Online Tools: AURKA Gene A as a Model
چکیده انگلیسی مقاله
Background: In-silico analysis provides a fast, simple, and cost-free method for identifying potentially pathogenic single
nucleotide variants.
Objective: To propose a simple and relatively fast method for the prediction of variant pathogenicity using free online
in-silico (IS) tools with AURKA gene as a model.
Materials and Methods: We aim to propose a methodology to predict variants with high pathogenic potential using
computational analysis, using AURKA gene as model. We predicted a protein model and analyzed 209 out of 64,369
AURKA variants obtained from Ensembl database. We used bioinformatic tools to predict pathogenicity. The results were
compared through the VarSome website, which includes its own pathogenicity score and the American College of Medical Genetics (ACMG) classification.
Results: Out of the 209 analyzed variants, 16 were considered pathogenic, and 13 were located in the catalytic domain.
The most frequent protein changes were size and hydrophobicity modifications of amino acids. Proline and Glycine amino
acid substitutions were the most frequent changes predicted as pathogenic. These bioinformatic tools predicted functional changes, such as protein up or down-regulation, gain or loss of molecule interactions, and structural protein modifications. When compared to the ACMG classification, 10 out of 16 variants were considered likely pathogenic, with 7 out of 10 changes at Proline/Glycine substitutions.
Conclusion: This method allows quick and cost-free bulk variant screening to identify variants with pathogenic potential
for further association and/or functional studies.
کلیدواژههای انگلیسی مقاله
Computational Biology,Genomic Structural Variation,Missense Mutation,Single nucleotide polymorphism
نویسندگان مقاله
Eric Jonathan Maciel-Cruz |
Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, Jalisco, México
Luis Eduardo Figuera-Villanueva |
1 Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, Jalisco, México
Liliana Gómez-Flores-Ramos |
CONAHCYT- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, Mexico.
Rubiceli Hernández-Peña |
Doctorado en Genética Humana, Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara (UdG), Guadalajara, Jalisco, México
Martha Patricia Gallegos-Arreola |
División de Genética, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara, Jalisco, México
نشانی اینترنتی
https://www.ijbiotech.com/article_196871_799543b81847e8398e9dacb795634c4c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات