این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
فیزیک زمین و فضا، جلد ۵۰، شماره ۲، صفحات ۴۶۵-۴۷۹

عنوان فارسی تصحیح خطای پیش‌بینی‌های کوتاه‌مدت دمای کمینه و بیشینه مدل WRF با استفاده از ماشین تعقیب‌کننده
چکیده فارسی مقاله برونداد مدل‌های پیش‌بینی عددی وضع هوا دارای خطا است. جهت اصلاح پیش‌بینی‌های کوتاه‌مدت (24، 48 و 72 ساعته) دمای بیشینه و کمینه مدل WRF، از یک روش یادگیری ماشین به نام ماشین تعقیب‌کننده استفاده شد. در این روش با سری زمانی 300 روزه از خطای برونداد مدل و با به‌کارگیری روش کمترین‌مربعات طیفی شبه فوریه-سری زمانی، خطای پیش‌بینی‌های مدل WRF برآورد شد. خطای پیش‌بینی‌ها در دوره 01/11/2020 الی 05/03/2023 برای 560 ایستگاه هواشناسی برآورد شد. یکی از نقاط قوت این روش، استفاده از تنها یک متغیر برای کاهش خطای پیش‌بینی‌های است. عملکرد پیش‌بینی مدل WRF بسته به مکان و زمان متفاوت است، مثلاً نمره مهارت مدل برای دمای بیشینه در ماه سپتامبر نسبت به سایر ماه‌ها کمتر و در مناطق جنوب غربی زاگرس نسبت به سایر مناطق کمتر است، که بعد از اصلاح این وابستگی حذف، و پیش‌بینی در تمام مناطق و زمان‌ها عملکرد یکسانی دارد. نتایج نشان داد نمره مهارت، RMSE و شاخص اطمینان‌پذیری پس از اصلاح خطای مدل به شکل قابل‌توجهی بهبود می‌یابد. پس از اصلاح خطا، نمره مهارت مدل برای پیش‌بینی دمای بیشینه از 1/0- به 85/0 و برای دمای کمینه از 38/0 به 72/0 می‌رسد. به‌طور متوسط RMSE برای پیش‌بینی دمای بیشینه از 6 به 2 درجه وبرای دمای کمینه از 5/4 به 3 درجه سلسیوس می‌رسد. پس از اصلاح خطای مدل، تغییرپذیری نمره مهارت پیش‌بینی‌ها کاهش یافته و با کاهش مقدار خطای پیش‌بینی‌ها، قابلیت اطمینان‌پذیری به پیش‌بینی‌های مدل به‌طور متوسط از 60 درصد به 85 درصد می‌رسد.
کلیدواژه‌های فارسی مقاله خطای طیفی،سری زمانی،قابلیت اطمینان،نمره مهارت،یادگیری ماشین،

عنوان انگلیسی Bias Correction of Short-Term Minimum and Maximum Temperature Forecasts of the WRF Model by Using the Pursuit Machine
چکیده انگلیسی مقاله The importance of accurate forecasting in agricultural hydrometeorology is clear. This research is an approach towards the use of a tracking machine with a hidden layer for error prediction at stationary points. The predicted error will be used to modify the model output. One of the strengths of this method is the use of a meteorological variable such as maximum and minimum temperature in applications. A tracking machine with a hidden layer tracks the time series of the short-term prediction error of the maximum and minimum temperature of the model with the kernel of trigonometric functions, which is formulated as follows:   It provides an error prediction that will effectively modify the model prediction. This machine is compact in terms of computing. The value of the standard deviation of the statistical population of the maximum temperature during the period was 10 celsius, which shows a significant improvement from the value of 9.5 to 10.01 by the tracking machine. Also, the standard deviation of the minimum temperature was about 8.5 degrees Celsius, which was improved by the machine from 7.7 to 8.4 degrees Celsius. In this research, we use the skill score criterion, whose value will show that the skill score of the model for short-term maximum temperature has grown from a negative value with a leap to more than 0.8, which shows the significant impact of the machine in improving forecasting. The minimum temperature prediction skill score of the model will show an increase in the way of improving the prediction. The comparison of the obtained results shows that the skill score and RMSE of predicting the maximum and minimum temperature of the modification of the output of the model have increased significantly compared to the model. Also, the monthly change in the skill score indicates the effect of the chasing car on the ability to correct the forecast, especially for the short-term maximum temperature. Investigations will show that the modification of the model has a uniform overfitting in the studied period. In addition, a powerful index independent of the concept of accuracy size will be introduced and used as a method to check the reliability of the model and tracking machine outputs, which indicates the level of confidence that can be had in the model and machine outputs. In this case, the reliability of the maximum and minimum temperature predictions and the significant growth of the index have shown stability in providing the output. After bias correction, the variability of the skill score has been significantly reduced, and by reducing the amount of forecasting error, the reliability of the model forecasts has increased from 60% to more than 85%. Depending on the location and time, the WRF model's forecasting performance is different, but after bias correction, this dependence is removed, and forecasting in all regions and times has almost the same performance.
کلیدواژه‌های انگلیسی مقاله خطای طیفی,سری زمانی,قابلیت اطمینان,نمره مهارت,یادگیری ماشین

نویسندگان مقاله مجتبی شکوهی |
پژوهشگاه هواشناسی و علوم جو، تهران، ایران.

مهدی مصری زاده |
پژوهشگاه هواشناسی و علوم جو، تهران، ایران.

ابراهیم اسعدی اسکویی |
پژوهشگاه هواشناسی و علوم جو، تهران، ایران.


نشانی اینترنتی https://jesphys.ut.ac.ir/article_95491_da44db68d46e762595605a9597febff2.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات