این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Reproduction and Infertility، جلد ۲۵، شماره ۲، صفحات ۱۱۰-۱۲۰

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Improving Deep Learning-Based Algorithm for Ploidy Status Prediction Through Combined U-NET Blastocyst Segmentation and Sequential Time-Lapse Blastocysts Images
چکیده انگلیسی مقاله

Background: Several approaches have been proposed to optimize the construction of an artificial intelligence-based model for assessing ploidy status. These encompass the investigation of algorithms, refining image segmentation techniques, and discerning essential patterns throughout embryonic development. The purpose of the current study was to evaluate the effectiveness of using U-NET architecture for embryo segmentation and time-lapse embryo image sequence extraction, three and ten hr before biopsy to improve model accuracy for prediction of embryonic ploidy status.
Methods: A total of 1.020 time-lapse videos of blastocysts with known ploidy status were used to construct a convolutional neural network (CNN)-based model for ploidy detection. Sequential images of each blastocyst were extracted from the time-lapse videos over a period of three and ten hr prior to the biopsy, generating 31.642 and 99.324 blastocyst images, respectively. U-NET architecture was applied for blastocyst image segmentation before its implementation in CNN-based model development.  
Results: The accuracy of ploidy prediction model without applying the U-NET segmented sequential embryo images was 0.59 and 0.63 over a period of three and ten hr before biopsy, respectively. Improved model accuracy of 0.61 and 0.66 was achieved, respectively with the implementation of U-NET architecture for embryo segmentation on the current model. Extracting blastocyst images over a 10 hr period yields higher accuracy compared to a three-hr extraction period prior to biopsy.
Conclusion: Combined implementation of U-NET architecture for blastocyst image segmentation and the sequential compilation of ten hr of time-lapse blastocyst images could yield a CNN-based model with improved accuracy in predicting ploidy status.

کلیدواژه‌های انگلیسی مقاله Artificial intelligence, Image processing, Neural networks, Ploidy measurement

نویسندگان مقاله | Nining Handayan
IRSI Research and Training Centre, Jakarta, Indonesia


| Gunawan Danardono
IRSI Research and Training Centre, Jakarta, Indonesia


| Arief Boediono
Department of Anatomy, Physiology and Pharmacology, IPB University, Bogor, Indonesia


| Budi Wiweko
Human Reproduction, Infertility, and Family Planning Cluster, Indonesia Reproductive Medicine Research and Training Center, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia


| Ivan Sini
Morula IVF Jakarta Clinic, Jakarta, Indonesia


| Batara Sirait
Department of Obstetrics and Gynaecology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia


| Arie Polim
Department of Obstetrics and Gynecology, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia


| Irham Suheimi
Morula IVF Jakarta Clinic, Jakarta, Indonesia


| Anom Bowolaks
Cellular and Molecular Mechanisms in Biological System (CEMBIOS) Research Group, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, Indonesia



نشانی اینترنتی https://www.jri.ir/article/140230
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات