این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۶، شماره ۱، صفحات ۳۱۹-۳۲۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Semantic reasoning system for monitoring natural disasters based on GeoSPARQL ontology and satellite images study cases: Flood-prone areas of Shiraz city
چکیده انگلیسی مقاله
Reliable and automatic classification of satellite images is of great importance for disaster management and climate change monitoring. In addition to recognizing objects and entities in satellite images, the ability to reason about these entities and subsequently respond to queries raised by human operators to guide decision-making processes is important. According to recent studies by climate researchers, various parts of Shiraz are exposed to flood risk. Therefore, the Shiraz flood scenario is real. So we have defined a disaster scenario where the central part of Shiraz is mostly covered by water. One of the main goals of this research is to show the geometry of the regions on the map, enabling the map to respond to questions related to the topology and neighborhood of the regions. In this research, we presented a framework to transfer satellite image data to an interactive map that is ready for mining. In order to obtain a searchable map directly from satellite data, a CNN classifier that is sensitive to image features is used to feed this framework with labelled regions. They show their capabilities in terms of route connectivity. Representing such features in an ontology that is an extension of the existing GeoSPARQL ontology enables the system to automatically search for classified areas based on specific criteria of areas, selected based on environmental status. We have shown how by semantically enriching the representation of regions in ontocity, we can enable the system to automatically find options for regions, thus improving search time, including region revision and co-routing. This SemCityMap framework can now be used as a tool for better decision-making and situational awareness.
کلیدواژههای انگلیسی مقاله
semantic reasoning,Ontology,satellite images,monitoring of natural disasters
نویسندگان مقاله
Nasim Khozouie |
Department of Computer Engineering, Faculty of Engineering, Yasouj University, Yasouj, Iran
Zahra Ansarifard |
Department of Computer Engineering, Faculty of Technology and Engineering, Poya Institute of Higher Education, Yasouj, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_8737_8e9dbe2dd4904d31f1209f00a58f012f.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات