این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
Iranian Journal of Chemistry and Chemical Engineering
، جلد ۴۳، شماره ۳، صفحات ۱۰۰۹-۱۰۱۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Response Surface Methodology Validation of Zinc, Copper, and Lead Ions Adsorption Using Bayesian Regression
چکیده انگلیسی مقاله
The adsorption of zinc, lead, and copper ions onto silica gel adsorbent has been successfully carried out in this study. Linear regression of polynomial transformation from input variables was employed to model the correlation between estimator variables (adsorbent dose, initial concentration, contact time, and pH) and output variable (%removal). Although the R
2
scores varied, overall, the models performed well in predicting metal ion removal. The regression coefficients
of the models revealed that adsorbent dose and pH were the most significant factors for zinc and copper adsorption, while initial concentration and contact time also have a significant role in lead adsorption. Bayesian regression was used as a complementary approach to Response Surface Methodology (RSM), revealing different weight distributions for zinc and copper adsorption compared to RSM polynomial regression. The study concludes that copper and lead adsorption using RSM are more reliable compared to zinc, and suggests further optimization of factors or levels for more accurate results. The use of Bayesian regression provides valuable insights into variable weights and can improve the optimization process. Overall, this study provides useful information for designing efficient metal ion adsorption processes. This study provides useful insights for future research on the competition for metal ions in adsorption processes.
کلیدواژههای انگلیسی مقاله
Adsorption,Zinc,copper,Lead,Response surface methodology,Bayesian Regression
نویسندگان مقاله
Suprapto Suprapto |
Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, INDONESIA
Yatim Lailun Ni'mah |
Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, INDONESIA
Ayu Subandi |
Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, INDONESIA
Nabila Yuningsih |
Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, INDONESIA
Anggun Pertiwi |
Department of Chemistry, Faculty of Science and Data Analytics, Institut Teknologi Sepuluh Nopember, INDONESIA
نشانی اینترنتی
https://ijcce.ac.ir/article_707857_51e1c14bf3e9e9980f4572940eac01c1.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات