این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
دریا فنون
، جلد ۱۱، شماره ۲، صفحات ۱۰۱-۱۱۸
عنوان فارسی
Novel Use of PRF Sound for Radar Emitter Recognition: A Transfer Learning-Infused DCNN Study
چکیده فارسی مقاله
In contemporary electronic warfare, the accurate and prompt identification of radar emitters is crucial, especially for the efficiency of electronic countermeasures. This study presents a new method that utilizes pulse repetition frequency (PRF) sound to identify radar emissions in response to the growing intricacy of modern radar systems. This study employs six transfer learning-based deep convolutional neural networks (DCNNs) to extract features. It provides a comprehensive examination of classification performance and computational efficiency across several DCNN designs. The VGG16 and ResNet50V2 models achieved recognition accuracies of 95.38% and 96.92%, respectively, with training times of 8.01 seconds and 21.25 seconds. This study also examines the trade-offs between accuracy and computational requirements, offering a strategic understanding of the subtle dynamics of radar emitter recognition. In situations when computational complexity is not the primary concern, ResNet50V2 is the most suitable choice. Alternatively, VGG16 is recommended due to its ability to compromise high accuracy and lower computing demands. This study establishes a standard for future research endeavors, which encompass enhancing the capabilities of models at a larger scale, optimizing current architectures without sacrificing accuracy, and progressing towards models that can autonomously adapt to hardware limitations. The results provide a thorough manual for choosing DCNN models that can effectively detect six different input types in various computational settings. This paves the way for creating advanced models that strike a harmonic balance between efficiency and accuracy.
کلیدواژههای فارسی مقاله
توفان گونو، مدل بالک آیرودینامیک، سرعت باد، ضریب کشال،
عنوان انگلیسی
Novel Use of PRF Sound for Radar Emitter Recognition: A Transfer Learning-Infused DCNN Study
چکیده انگلیسی مقاله
In contemporary electronic warfare, the accurate and prompt identification of radar emitters is crucial, especially for the efficiency of electronic countermeasures. This study presents a new method that utilizes pulse repetition frequency (PRF) sound to identify radar emissions in response to the growing intricacy of modern radar systems. This study employs six transfer learning-based deep convolutional neural networks (DCNNs) to extract features. It provides a comprehensive examination of classification performance and computational efficiency across several DCNN designs. The VGG16 and ResNet50V2 models achieved recognition accuracies of 95.38% and 96.92%, respectively, with training times of 8.01 seconds and 21.25 seconds. This study also examines the trade-offs between accuracy and computational requirements, offering a strategic understanding of the subtle dynamics of radar emitter recognition. In situations when computational complexity is not the primary concern, ResNet50V2 is the most suitable choice. Alternatively, VGG16 is recommended due to its ability to compromise high accuracy and lower computing demands. This study establishes a standard for future research endeavors, which encompass enhancing the capabilities of models at a larger scale, optimizing current architectures without sacrificing accuracy, and progressing towards models that can autonomously adapt to hardware limitations. The results provide a thorough manual for choosing DCNN models that can effectively detect six different input types in various computational settings. This paves the way for creating advanced models that strike a harmonic balance between efficiency and accuracy.
کلیدواژههای انگلیسی مقاله
PRF sound, radar emitter, deep convolutional neural network, extreme learning machines, gray wolf optimizer
نویسندگان مقاله
سید مجید حسنی اژدری |
گروه آموزشی جنگ الکترونیک، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر، ایران
محمد خویشه |
گروه الکترونیک، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر ایران
فلاح محمدزاده |
گروه مخابرات، دانشکده مهندسی برق، دانشگاه علوم دریایی امام خمینی (ره)، نوشهر ایران
نشانی اینترنتی
http://ijmt.iranjournals.ir/article_247932_78320463ac3db6df7aca25908b859d0e.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
fa
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات