این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Medical Physics، جلد ۱۳، شماره ۴، صفحات ۲۶۱-۲۶۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Hierarchical Classification Method for Breast Tumor Detection
چکیده انگلیسی مقاله Introduction Breast cancer is the second cause of mortality among women. Early detection of it can enhance the chance of survival. Screening systems such as mammography cannot perfectly differentiate between patients and healthy individuals. Computer-aided diagnosis can help physicians make a more accurate diagnosis. Materials and Methods Regarding the importance of separating normal and abnormal cases in screening systems, a hierarchical classification system is defined in this paper. The proposed system is including two Adaptive Boosting (AdaBoost) classifiers, the first classifier separates the candidate images into two groups of normal and abnormal. The second classifier is applied on the abnormal group of the previous stage and divides them into benign and malignant categories. The proposed algorithm is evaluated by applying it on publicly available Mammographic Image Analysis Society (MIAS) dataset. 288 images of the database are used, including 208 normal and 80 abnormal images. 47 images of the abnormal images showed benign lesion and 33 of them had malignant lesion. Results Applying the proposed algorithm on MIAS database indicates its advantage compared to previous methods. A major improvement occurred in the first classification stage. Specificity, sensitivity, and accuracy of the first classifier are obtained as 100%, 95.83%, and 97.91%, respectively. These values are calculated as 75% in the second stage Conclusion A hierarchical classification method for breast cancer detection is developed in this paper. Regarding the importance of separating normal and abnormal cases in screening systems, the first classifier is devoted to separate normal and tumorous cases. Experimental results on available database shown that the performance of this step is adequately high (100% specificity). The second layer is designed to detect tumor type. The accuracy in the second layer is obtained 75%.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله مجتبی محمدپور | mojtaba mohammadpoor
electrical amp;amp; computer dept., university of gonabad, gonabad, iran


افشین شعیبی | afshin shoeibi
medical physics dept., gonabad university of medical sciences, gonabad, iran

سازمان اصلی تایید شده: دانشگاه علوم پزشکی گناباد (Gonabad university of medical sciences)

هدی زارع | hoda zare
medical physics research center, mashhad university of medical sciences, mashhad, iran

سازمان اصلی تایید شده: دانشگاه علوم پزشکی مشهد (Mashhad university of medical sciences)

حسن شجاعی | hasan shojaee
basic sciences dept., gonabad university of medical sciences, gonabad, iran

سازمان اصلی تایید شده: دانشگاه علوم پزشکی گناباد (Gonabad university of medical sciences)


نشانی اینترنتی http://ijmp.mums.ac.ir/article_8453.html
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/145/article-145-326814.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات