این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Medical Physics، جلد ۱۳، شماره ۴، صفحات ۲۷۶-۲۸۸

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی A Simulation Study on Patient Setup Errors in External Beam Radiotherapy Using an Anthropomorphic 4D Phantom
چکیده انگلیسی مقاله Introduction Patient set-up optimization is required in radiotherapy to fill the accuracy gap between personalized treatment planning and uncertainties in the irradiation set-up. In this study, we aimed to develop a new method based on neural network to estimate patient geometrical setup using 4-dimensional (4D) XCAT anthropomorphic phantom. Materials and Methods To access 4D modeling of motion of dynamic organs, a phantom employs non-uniform rational B-splines (NURBS)-based Cardiac-Torso method with spline-based model to generate 4D computed tomography (CT) images. First, to generate all the possible roto-translation positions, the 4D CT images were imported to Medical Image Data Examiner (AMIDE). Then, for automatic, real time verification of geometrical setup, an artificial neural network (ANN) was proposed to estimate patient displacement, using training sets. Moreover, three external motion markers were synchronized with a patient couch position as reference points. In addition, the technique was validated through simulated activities by using reference 4D CT data acquired from five patients. Results The results indicated that patient geometrical set-up is highly depended on the comprehensiveness of training set. By using ANN model, the average patient setup error in XCAT phantom was reduced from 17.26 mm to 0.50 mm. In addition, in the five real patients, these average errors were decreased from 18.26 mm to 1.48 mm various breathing phases ranging from inhalation to exhalation were taken into account for patient setup. Uncertainty error assessment and different setup errors were obtained from each respiration phase. Conclusion This study proposed a new method for alignment of patient setup error using ANN model. Additionally, our correlation model (ANN) could estimate true patient position with less error.
کلیدواژه‌های انگلیسی مقاله

نویسندگان مقاله پیام صمدی میاندوآب | payam samadi miandoab
department of electrical and computer engineering, medical radiation group, graduate university of advanced technology, haft bagh highway, knowledge paradise, kerman, iran.

سازمان اصلی تایید شده: دانشگاه تحصیلات تکمیلی صنعتی کرمان (Graduate university of advanced technology)

احمد اسماعیلی ترشابی | ahmad esmaili torshabi
department of electrical and computer engineering, medical radiation group, graduate university of advanced technology, haft bagh highway, knowledge paradise, kerman, iran.

سازمان اصلی تایید شده: دانشگاه تحصیلات تکمیلی صنعتی کرمان (Graduate university of advanced technology)

صابر نانکلی | saber nankali
department of electrical and computer engineering, medical radiation group, graduate university of advanced technology, haft bagh highway, knowledge paradise, kerman, iran.

سازمان اصلی تایید شده: دانشگاه تحصیلات تکمیلی صنعتی کرمان (Graduate university of advanced technology)

محمدرضا رضایی | mohammad reza rezaie
department of electrical and computer engineering, medical radiation group, graduate university of advanced technology, haft bagh highway, knowledge paradise, kerman, iran.

سازمان اصلی تایید شده: دانشگاه تحصیلات تکمیلی صنعتی کرمان (Graduate university of advanced technology)


نشانی اینترنتی http://ijmp.mums.ac.ir/article_8320.html
فایل مقاله اشکال در دسترسی به فایل - ./files/site1/rds_journals/145/article-145-326816.pdf
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده Original Paper
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات