این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Journal of Artificial Intelligence and Data Mining، جلد ۱۲، شماره ۲، صفحات ۱۶۳-۱۹۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی An Intelligent Blockchain-Based System Configuration for Screening, Monitoring, and Tracing of Pandemics
چکیده انگلیسی مقاله This study proposes a high-level design and configuration for an intelligent dual (hybrid and private) blockchain-based system. The configuration includes the type of network, level of decentralization, nodes, and roles, block structure information, authority control, and smart contracts and intended to address the two main categories of challenges–operation management and data management–through three intelligent modules across the pandemic stages. In the pre-hospital stage, an intelligent infection prediction system is proposed that utilizes in-house data to address the lack of a simple, efficient, agile, and low-cost screening method for identifying potentially infected individuals promptly and preventing the overload of patients entering hospitals. In the in-hospital stage, an intelligent prediction system is proposed to predict infection severity and hospital Length of Stay (LoS) to identify high-risk patients, prioritize them for receiving care services, and facilitate better resource allocation. In the post-hospital stage, an intelligent prediction system is proposed to predict the reinfection and readmission rates, to help reduce the burden on the healthcare system and provide personalized care and follow-up for higher-risk patients. In addition, the distribution of limited Personal protective equipment (PPE) is made fair using private blockchain (BC) and smart contracts. These modules were developed using Python and utilized to evaluate the performance of state-of-the-art machine learning (ML) techniques through 10-fold cross-validation at each stage. The most critical features were plotted and analyzed using SHapely Adaptive exPlanations (SHAP). Finally, we explored the implications of our system for both research and practice and provided recommendations for future enhancements.
کلیدواژه‌های انگلیسی مقاله Pandemic,Blockchain,Artificial intelligence,Configuration,System

نویسندگان مقاله Ali Rebwar Shabrandi |
Faculty of Management and Economics, Tarbiat Modares University, Tehran, Iran.

Ali Rajabzadeh Ghatari |
Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University.

Mohammad Dehghan Nayeri |
Department of Industrial Management, Faculty of Management and Economics, Tarbiat Modares University.

Nader Tavakoli |
Department of Emergency Medicine, Trauma and Injury Research Center, Iran University of Medical Sciences.

Sahar Mirzaei |
Iran University of Medical Sciences, Tehran, Iran.


نشانی اینترنتی https://jad.shahroodut.ac.ir/article_3251_e854a6999c65fb45b0cbc4383efadf8e.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات