این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
جمعه 21 آذر 1404
Journal of Artificial Intelligence and Data Mining
، جلد ۱۲، شماره ۲، صفحات ۱۹۳-۲۱۵
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Selecting Optimal Moments of Chest Images by Partialized-Dual-Hybrid Feature Selection Scheme for Morphological-based COVID-19 Diagnosis
چکیده انگلیسی مقاله
One way of analyzing COVID-19 is to exploit X-ray and computed tomography (CT) images of the patients' chests. Employing data mining techniques on chest images can provide in significant improvements in the diagnosis of COVID-19. However, in feature space learning of chest images, there exists a large number of features that affect COVID-19 identification performance negatively. In this work, we aim to design the dual hybrid partial-oriented feature selection scheme (DHPFSS) for selecting optimal features to achieve high-performance COVID-19 prediction. First, by applying the Zernike function to the data, moments of healthy chest images and infected ones were extracted. After Zernike moments (ZMs) segmentation, subsets of ZMs (SZMs1:n) are entered into the DHPFSS to select SZMs1:n-specific optimal ZMs (OZMs1:n). The DHPFSS consists of the filter phase and dual incremental wrapper mechanisms (IWMs), namely incremental wrapper subset selection (IWSS) and IWSS with replacement (IWSSr). Each IWM is fed by ZMs sorted by filter mechanism. The dual IWMs of DHPFSS are accompanied with the support vector machine (SVM) and twin SVM (TWSVM) classifiers equipped with radial basis function kernel as SVMIWSSTWSVM and SVMIWSSrTWSVM blocks. After selecting OZMs1:n, the efficacy of the :union: of OZMs1:n is evaluated based on the cross-validation technique. The obtained results manifested that the proposed framework has accuracies of 98.66%, 94.33%, and 94.82% for COVID-19 prediction on COVID-19 image data (CID) including 1CID, 2CID, and 3CID respectively, which can improve accurate diagnosis of illness in an emergency or the absence of a specialist.
کلیدواژههای انگلیسی مقاله
Hybrid feature selection scheme,Hyperplane-based learning methods,Optimal Zernike moments,COVID-19 prediction
نویسندگان مقاله
Seyed Alireza Bashiri Mosavi |
Department of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.
Mohsen Javaherian |
Research Institute for Astronomy and Astrophysics of Maragha, University of Maragheh, 55136-553, Maragheh, Iran.
Omid Khalaf Beigi |
Department of Electrical and Computer Engineering, Kharazmi University, Tehran, Iran.
نشانی اینترنتی
https://jad.shahroodut.ac.ir/article_3252_0e3b059ef2e5df076fdf7a320a483ac9.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات