این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
پنجشنبه 27 آذر 1404
Journal of Health Management and Informatics
، جلد ۱۰، شماره ۴، صفحات ۱۹۴-۲۰۷
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Automated Fetal Head Circumference Measurement by Ultrasound Using V-NET and Data Augmentation
چکیده انگلیسی مقاله
One of the common methods for monitoring fetal growth is measuring its head circumference in ultrasound images taken from the mother's womb. In recent years utilizing deep learning methods have been expanded in this application thanks to its potential in promoting the accuracy of estimating head circumference. However, the performance of deep neural networks is highly dependent on the volume of training data. On the other hand, the region of the fetal head is segmented with considerable errors, due to the presence of various types of noise. In this article, a new method is presented to improve fetal head circumference estimation in ultrasound images in which by using unsupervised data augmentation an attempt is made to increase the amount of training data of the deep network. Parallelly by utilizing an elliptical contour estimation method, an optimal contour is created to decrease the segmentation errors . Comparing the performance of the proposed scheme with the basic method as well as state-of-art schemes shows the improvement of fetal head circumference estimation with the help of the proposed algorithm in such way that not only the quality of fetal head circumference measurement with the Dice parameter has been improved by 0.6% and 3.24% respectively compared to the closest alternative and the basic method, but also the variance of the obtained results in both types of these comparisons have improved dramatically. These achievements demonstrate the performance of the proposed method is also more focused and reliable in addition to being more accurate.
کلیدواژههای انگلیسی مقاله
Deep neural networks,Fetal head circumference,Ultrasound,Unsupervised data augmentation,Optimal contour estimation
نویسندگان مقاله
Seyed Vahab Shojaedini |
Department of Biomedical Engineering, Iranian Research Organization for Science & Technology, Tehran, Iran
Amir Sanyian |
Department of Computer Engineering, Faculty of Engineering, Islamic Azad University, Qazvin branch, Qazvin, Iran
Mohammadreza Riahi |
Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran
Mahsa Monajemi |
Department of Biomedical Engineering, Faculty of Engineering, Islamic Azad University, Qazvin branch, Qazvin, Iran
نشانی اینترنتی
https://jhmi.sums.ac.ir/article_50160_627ff91a28228ab8be018079ca25aebe.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات