این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 6 دی 1404
Journal of Computational and Applied Research in Mechanical Engineering - JCARME
، جلد ۱۴، شماره ۱، صفحات ۰-۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Smart maintenance strategies in combined cycle power plant
چکیده انگلیسی مقاله
This research investigates the effectiveness of various vibration data acquisition techniques coupled with different machine learning models for detecting anomalies and classifying them. To this end, synthetic vibration data was generated for techniques such as eddy current proximity transducers (ECPT), accelerometer sensor, blade tip timing, laser doppler vibrometer (LDV), and strain gauge. Afterward, the data was pre-processed and used to train gradient boosting machine, support vector machine, and random forest models. Performance evaluation metrics, including accuracy, recall, F1-score, receiver operating characteristic, and area Under curve were employed to assess the models, revealing varying degrees of success across combining techniques and models. Notable achievements were observed for the random forest model coupled with the eddy current proximity transducers technique, underscoring the significance of informed technical selection and model optimization in enhancing vibration anomaly detection systems in combined cycle power plants. The results showed that the LDV technique has a significant increase in accuracy from about 0.49 to approximately 0.52, while the ECPT technique has improved from about 0.9 to close 1.0. These advances highlight the growing accuracy of the methods and enable the development of more efficient and reliable learning machines.
کلیدواژههای انگلیسی مقاله
Anomaly detection, Machine Learning, Eddy current proximity transducers, Blade tip timing, Laser doppler vibrometer
نویسندگان مقاله
Al-Tekreeti Watban Khalid Fahmi |
Department of Mechanical Engineering, Academy of Engineering, RUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
Kazem Reza Kashyzadeh |
Department of Transport Equipment and Technology, Academy of Engineering, RUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
Siamak Ghorbani |
Department of Mechanical Engineering, Academy of Engineering, RUDN University, 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
نشانی اینترنتی
https://jcarme.sru.ac.ir/article_2124_b14dc9b5065d50e87068cd41b9d3959c.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات