این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
Journal of Sciences Islamic Republic of Iran
، جلد ۳۵، شماره ۱، صفحات ۶۳-۶۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Prediction of Anoxic Tonic Seizures due to Asthma in Children Using Machine Learning Methods
چکیده انگلیسی مقاله
The objective of this study is to investigate the factors influencing asthma attacks in children under six years old using machine learning (ML) methods. There are many statistical methods for data classification that can be used to classify medical data. But using the data itself as well as a set of different methods in machine learning can provide vast and more comparable results. Hence, this study applied ML approaches to predict asthma and second anoxic tonic seizures due to asthma (ATSA) based on variables such as first ATSA, age, region of residence, parent smoking status, and parents' asthma history. The results revealed that children's age and place of residence significantly affected the duration of asthma attacks, with children living in certain areas of Tehran experiencing shorter intervals between attacks due to high air pollution. Machine learning techniques proved useful in predicting ATSA based on age, gender, living region, parents' smoking status, and asthma history, with the AdaBoost method highlighting the importance of the child's age and living area in predicting ATSA.
کلیدواژههای انگلیسی مقاله
The objective of this study is to investigate the factors influencing asthma attacks in children under six years old using machine learning (ML) methods. There are many statistical methods for data classification that can be used to classify medical,this study applied ML approaches to predict asthma and second anoxic tonic seizures due to asthma (ATSA) based on variables such as first ATSA,age,region of residence,parent smoking status,and parents&apos, asthma history. The results revealed that children&apos,s age and place of residence significantly affected the duration of asthma attacks,with children living in certain areas of Tehran experiencing shorter intervals between attacks due to high air pollution. Machine learning techniques proved useful in predicting ATSA based on age,gender,living region,parents&apos, smoking status,and asthma history,with the AdaBoost method highlighting the importance of the child&apos,s age and living area in predicting ATSA
نویسندگان مقاله
Kiomars Motarjem |
1 Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
Meisam Moghimbeygi |
2 Department of Mathematics, Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, Islamic Republic of Iran
نشانی اینترنتی
https://jsciences.ut.ac.ir/article_97972_bdd38edf5e342e57f422538a35a34eb6.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات