این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
چهارشنبه 26 آذر 1404
Journal of Livestock Science and Technology
، جلد ۱۲، شماره ۲، صفحات ۵۳-۵۹
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Assessing the predictive performance of the Bagging algorithm for genomic selection
چکیده انگلیسی مقاله
The aim of the present study was to compare the predictive performance of the Bagging algorithm with other decision tree-based methods, including regression tree (RT), random forest (RF) and Boosting in genomic selection. A genome including ten chromosomes for 1,000 individuals on which 10,000 single nucleotide polymorphisms (SNP) were evenly distributed was simulated. QTL effects were assigned to 10% of the polymorphic SNPs, with effects sampled from a gamma distribution. Predictive performance measures including accuracy of prediction, reliability and bias were used to compare the methods. Computing time and memory requirements of the studied methods were also measured. In all methods studied, the accuracy of genomic evaluation increased following increase in the heritability level from 0.10 to 0.50. While RT was the most efficient user of time and memory, it was not recommended for genomic selection due to its poor predictive performance. The obtained results showed that the predictive performance of Bagging was equal to RF and higher than RT and Boosting. However, it required significantly higher computational time and memory requirements. Considering the overall performance, Bagging was recommended for genomic selection, especially when due to the size and structure of the genomic data, the use of RF is limited.
کلیدواژههای انگلیسی مقاله
gamma distribution, genomic selection, heritability, regression tree, SNP
نویسندگان مقاله
Farhad Ghafouri-Kesbi |
Department of Animal Science, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
نشانی اینترنتی
https://lst.uk.ac.ir/article_4458_c68f7c66359a3fa36c5971f8dadf953d.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات