این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
شنبه 22 آذر 1404
Iranian Journal of Electrical and Electronic Engineering
، جلد ۲۰، شماره ۴، صفحات ۳۳۴۸-۳۳۴۸
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
GPS Spoofing Detection using CAF Images and Neural Networks Based on the Proposed Peak Mapping Dimensionality Reduction Algorithm and TCNN Model
چکیده انگلیسی مقاله
Global Positioning System (GPS)-based positioning has become an indispensable part of our daily lives. A GPS receiver calculates its distance from a satellite by measuring the signal reception delay. Then, after determining its position relative to at least four satellites, the receiver obtains its precise location in three dimensions. There is a fundamental flaw in this positioning system, namely that satellite signals at ground level are very weak and susceptible to interference in the bandwidth; therefore, even a slight interference can disrupt the GPS receiver. In this paper, spoofing detection based on the Cross Ambiguity Function (CAF) is used. Furthermore, a dimension reduction algorithm is proposed to improve the speed and performance of the detection process. The reduced-dimensional images are trained by a Convolutional Neural Network (CNN). Additionally, a modified CNN model as Transformed-CNN (TCNN) is presented to enhance accuracy in this paper. The simulation results show a 98.67% improvement in network training speed compared to images with original dimensions, a 1.16% improvement in detection accuracy compared to the baseline model with reduced dimensions, and a 9.83% improvement compared to the original dimensions in detecting spoofing, demonstrating the effectiveness of the proposed algorithm and model.
کلیدواژههای انگلیسی مقاله
GPS, Spoofing Detection, CAF, TCNN, Dimension Reduction Algorithm
نویسندگان مقاله
| M. J. Jahantab
School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| S. Tohidi
School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| Mohammad Reza Mosavi
School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
| Ahmad Ayatollahi
School of Electrical Engineering, Iran University of Science and Technology (IUST), Narmak, Tehran 16846-13114, Iran.
نشانی اینترنتی
http://ijeee.iust.ac.ir/browse.php?a_code=A-10-78-34&slc_lang=en&sid=1
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
5-Signal Processing
نوع مقاله منتشر شده
Research Paper
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات