این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
سه شنبه 25 آذر 1404
Iranian Journal of Chemistry and Chemical Engineering
، جلد ۴۳، شماره ۱۱، صفحات ۳۹۲۶-۳۹۴۱
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
XRD and SEM Characterization and Investigation of Effective Agents of Medicinal Plants and Nanoparticles: Machine Learning (ML) Analysis
چکیده انگلیسی مقاله
This study focuses on the characterization and investigation of effective agents in medicinal plants and nanoparticles, aiming to understand their potential applications. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques were employed to analyze the structural and morphological properties of the samples. XRD provided valuable information
on crystalline phases, crystal structure, and lattice parameters, while SEM revealed surface morphology,
particle size distribution, and aggregation behavior. These techniques facilitated a comprehensive understanding of the physical and chemical properties, crucial for effective utilization. Machine
Learning (ML) analysis was employed to uncover patterns and correlations within the data. ML algorithms
were used to identify significant features, establish predictive models, and gain insights into
the relationships between sample properties and effective agents. This enhanced understanding of the factors influencing efficacy, paving the way for targeted applications. The study encompassed two main research areas. Firstly, a ML was developed to estimate Z, P>|Z|, and the 95% confidence interval by manipulating coefficients (COEF) and robust standard errors (ROBUST STD.ERR) in wider intervals compared to the experimental samples. The study revealed a direct relationship between coefficients and robust standard errors, with increasing coefficients leading to higher robust standard errors and an expanded 95% confidence interval. Additionally, the study emphasized the significance of income from Chinese medicinal materials in the financing process for growers, as income variations impacted their willingness to finance technology adoption. By exploring the connection between technology adoption and financing, the research aimed to enhance understanding and logical linkage, contributing to more effective and sustainable agricultural development.
کلیدواژههای انگلیسی مقاله
Characterization,Medicinal plants,nanoparticles,X-ray diffraction (XRD),Scanning Electron Microscopy (SEM),Machine learning (ML) analysis
نویسندگان مقاله
Bin Wang |
College of Economics and Management, Hebei Agricultural University, Baoding, P.R. CHINA
Wenqing Wang |
College of Economics and Management, Hebei Agricultural University, Baoding, P.R. CHINA
Jianzhong Wang |
College of Economics and Management, Hebei Agricultural University, Baoding, P.R. CHINA
نشانی اینترنتی
https://ijcce.ac.ir/article_715836_3a16f3519f1baef39bfafd601be2ac55.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات