این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 23 آذر 1404
International Journal of Nonlinear Analysis and Applications
، جلد ۱۶، شماره ۶، صفحات ۵۹-۷۰
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
Online neuro-inverse dynamics controller for nonlinear induction furnace system: Fault hiding approach
چکیده انگلیسی مقاله
In this paper, an online neural inverse controller is used to deal with actuator faults. In such a way that the inverse of the nonlinear induction furnace system (IFS) is used as a fault-tolerant controller (FTC) so that it can cover the fault of the actuator. The design is such that an online neural network is used to model the NIFC, the three-layer neural network is converted into a four-layer RBF neural network, and the last layer is the nonlinear IFS, and this layer is It is unchangeable and the controller and the system are connected and finally form a four-layer neural network. So, an intelligent inverse model of the IFS is used as FTC to cover the actuator fault of the nonlinear IFC. This controller design is done in two ways: in the first part, five inputs are used for training the neural network, one of which is the neural network training error, but in the second part, in addition to the five inputs of the first part, the derivative of the error is used. And the error integral has also been used in neural network training and the advantage of the second plan is to reduce overshoot. Finally, a fault actuator is applied to the nonlinear IFS in the 10th to the 30th second, despite the presence of the intelligent FTC, this defect is covered in less than one second, and the system continues to function normally despite the operator's defect in this interval of time.
کلیدواژههای انگلیسی مقاله
Inverse Neural Control,Fault-tolerant control,Induction Furnace,RBF Neural Network
نویسندگان مقاله
Narges Torabi |
Isfahan University of Technology (IUT), Isfahan, Iran
Reza Ghasemi |
University of Qom, Qom, Iran
نشانی اینترنتی
https://ijnaa.semnan.ac.ir/article_9025_b7091c090a5e68abb77551341a9b0244.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات