این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
صفحه اصلی
درباره پایگاه
فهرست سامانه ها
الزامات سامانه ها
فهرست سازمانی
تماس با ما
JCR 2016
جستجوی مقالات
یکشنبه 30 آذر 1404
International Journal of Engineering
، جلد ۳۸، شماره ۶، صفحات ۱۲۶۴-۱۲۷۳
عنوان فارسی
چکیده فارسی مقاله
کلیدواژههای فارسی مقاله
عنوان انگلیسی
EEG-based Feature Space for Supporting Deep Neural Networks in Image Classification
چکیده انگلیسی مقاله
Decoding human brain activity evoked by visual stimuli has always been an interesting topic in cognitive neuroscience. In this paper, electroencephalographic (EEG) signals are employed to enhance the image classification accuracy and indirectly define the targets of the images, by fusing EEG-based regressed features and the features extracted from a deep neural network. To this end, we proposed an EEG encoder that included one Long Short-Term Memory (LSTM) layer followed by one convolutional layer to extract the representative features from EEG signals. Then, these EEG-based features are fused with those from a deep neural network (DNN) which is fed directly by the corresponding images. These fused feature vectors and predicted labels from the proposed encoder are employed to train an SVM-based classifier due to its generalization ability. In the test phase, the DNN-based visual feature is projected onto the proper EEG-based feature space via a regressor, and the fused feature vector is obtained and applied to the SVM. Evaluating the proposed model on the ImageNet-EEG dataset, which includes 40 classes of images, shows that the proposed encoder reaches an average accuracy of 99.35% for classifying EEG signals. The proposed human brain-guided system also improved image classification accuracy by over 10% compared to the deep neural network.
کلیدواژههای انگلیسی مقاله
Image classification,Brain-guided System,EEG signals,Deep Neural Network,Feature fusion
نویسندگان مقاله
S. Jahanaray |
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
M. Ezoji |
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
Z. Imani |
Faculty of Electrical and Computer Engineering, Babol Noshirvani University of Technology, Babol, Iran
نشانی اینترنتی
https://www.ije.ir/article_210964_5dc78caf0222f592efe23b5062bf1599.pdf
فایل مقاله
فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده
en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به:
صفحه اول پایگاه
|
نسخه مرتبط
|
نشریه مرتبط
|
فهرست نشریات