این سایت در حال حاضر پشتیبانی نمی شود و امکان دارد داده های نشریات بروز نباشند
Iranian Journal of Fuzzy Systems، جلد ۲۲، شماره ۱، صفحات ۱-۲۱

عنوان فارسی
چکیده فارسی مقاله
کلیدواژه‌های فارسی مقاله

عنوان انگلیسی Fuzzy portfolio selection with different risk attitudes based on Machine Learning
چکیده انگلیسی مقاله In this paper, we define the possibilistic mean, variance and covariance with different risk attitudes and analyses their mathematical property. The mean and variance of the portfolio model are calculated by the fuzzy numbers, which are predicted by the Long-Short Term Memory networks (LSTM), Convolutional Neural Networks (CNN), Support Vector Regression (SVR) and Random Forest (RF). Considering the borrowing constraints, transaction costs and threshold constraints, a new mean and variance fuzzy portfolio selection model with different risk attitudes based on Machine Learning is proposed. Based on the possibilistic measure, the proposed model is transformed into a quadratic programming problem, which is solved by the pivoting algorithm. Finally, the in-sample and out-of-sample comparison analyses of different constraints and different risk attitudes are provided to test the model and the algorithm.
کلیدواژه‌های انگلیسی مقاله The fuzzy portfolio selection,Mean variance,Possibilistic measure,Different risk attitudes,Machine Learning

نویسندگان مقاله Peng Zhang |
School of Economics and Management, South China Normal University, Guangzhou 510006, P.R. China

Shulin Cui |
School of Economics and Management, South China Normal University, Guangzhou 510006, P.R. China

Beibei Du |
School of Economics and Management, South China Normal University, Guangzhou 510006, P.R. China


نشانی اینترنتی https://ijfs.usb.ac.ir/article_8901_a06a9ef2d4f258de1d4b6542a3769d21.pdf
فایل مقاله فایلی برای مقاله ذخیره نشده است
کد مقاله (doi)
زبان مقاله منتشر شده en
موضوعات مقاله منتشر شده
نوع مقاله منتشر شده
برگشت به: صفحه اول پایگاه   |   نسخه مرتبط   |   نشریه مرتبط   |   فهرست نشریات